Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 409(15): 3861-3870, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28424859

RESUMO

Carbon-based nanomaterials (CNM) represent promising materials for the application as sorbents in micro- and other extraction devices. In this work, we investigate the applicability of five different CNM (multi-walled carbon nanotubes (MWCNTs), fullerenes, carboxylic acid functionalized multi-walled carbon nanotubes (MWCNTs-COOH), graphene platelets, and carbon nanohorns) for their performance on PAH extraction from the aqueous phase by headspace in-tube extraction (HS-ITEX). Optimal extraction parameters for HS-ITEX were determined using a Box-Behnken experimental design. From the extraction yield response, central point analysis, fullerenes showed the best extraction properties for the eight selected headspace compatible PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene). Fullerenes were used for a further method validation including the linear range, limit of detection, precision, as well as recovery. Finally, extraction yields were compared to a commercial material (Tenax GR), demonstrating that fullerene represents a better option as sorbent in ITEX for PAH analysis. Method detection limits for the PAH on fullerene ranged from 10 to 300 ng L-1, with recoveries between 45 and 103%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa