Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 173(7): 1796-1809.e17, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29779944

RESUMO

Non-coding genetic variation is a major driver of phenotypic diversity and allows the investigation of mechanisms that control gene expression. Here, we systematically investigated the effects of >50 million variations from five strains of mice on mRNA, nascent transcription, transcription start sites, and transcription factor binding in resting and activated macrophages. We observed substantial differences associated with distinct molecular pathways. Evaluating genetic variation provided evidence for roles of ∼100 TFs in shaping lineage-determining factor binding. Unexpectedly, a substantial fraction of strain-specific factor binding could not be explained by local mutations. Integration of genomic features with chromatin interaction data provided evidence for hundreds of connected cis-regulatory domains associated with differences in transcription factor binding and gene expression. This system and the >250 datasets establish a substantial new resource for investigation of how genetic variation affects cellular phenotypes.


Assuntos
Variação Genética , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Células da Medula Óssea/citologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Análise por Conglomerados , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
2.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38743589

RESUMO

Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression, but can also be due to incomplete lineage sorting. Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions cosegregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial incomplete lineage sorting characterizing this young radiation. Instead, the maintenance of all three autosomal inversions (chr1, chr5, and chr6) is best explained by selection acting along ecogeographic clines not observed for the collinear parts of the genome. In addition, the sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.


Assuntos
Inversão Cromossômica , Animais , Seleção Genética , Especiação Genética , Evolução Molecular , Passeriformes/genética
3.
Haematologica ; 107(1): 100-111, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34134471

RESUMO

Identification of fusion genes in clinical routine is mostly based on cytogenetics and targeted molecular genetics, such as metaphase karyotyping, fluorescence in situ hybridization and reverse-transcriptase polymerase chain reaction. However, sequencing technologies are becoming more important in clinical routine as processing time and costs per sample decrease. To evaluate the performance of fusion gene detection by RNAsequencing compared to standard diagnostic techniques, we analyzed 806 RNA-sequencing samples from patients with acute myeloid leukemia using two state-of-the-art software tools, namely Arriba and FusionCatcher. RNA-sequencing detected 90% of fusion events that were reported by routine with high evidence, while samples in which RNA-sequencing failed to detect fusion genes had overall lower and inhomogeneous sequence coverage. Based on properties of known and unknown fusion events, we developed a workflow with integrated filtering strategies for the identification of robust fusion gene candidates by RNA-sequencing. Thereby, we detected known recurrent fusion events in 26 cases that were not reported by routine and found discrepancies in evidence for known fusion events between routine and RNA-sequencing in three cases. Moreover, we identified 157 fusion genes as novel robust candidates and comparison to entries from ChimerDB or Mitelman Database showed novel recurrence of fusion genes in 14 cases. Finally, we detected the novel recurrent fusion gene NRIP1- MIR99AHG resulting from inv(21)(q11.2;q21.1) in nine patients (1.1%) and LTN1-MX1 resulting from inv(21)(q21.3;q22.3) in two patients (0.25%). We demonstrated that NRIP1-MIR99AHG results in overexpression of the 3' region of MIR99AHG and the disruption of the tricistronic miRNA cluster miR-99a/let-7c/miR-125b-2. Interestingly, upregulation of MIR99AHG and deregulation of the miRNA cluster, residing in the MIR99AHG locus, are known mechanisms of leukemogenesis in acute megakaryoblastic leukemia. Our findings demonstrate that RNA-sequencing has a strong potential to improve the systematic detection of fusion genes in clinical applications and provides a valuable tool for fusion discovery.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Criança , Rearranjo Gênico , Humanos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética , Análise de Sequência de RNA , Translocação Genética
4.
BMC Bioinformatics ; 21(1): 115, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32183713

RESUMO

BACKGROUND: In vertebrate genomes, CpG sites can be clustered into CpG islands, and the amount of methylation in a CpG island can change due to gene regulation processes. Thus, single regulatory events can simultaneously change the methylation states of many CpG sites within a CpG island. This should be taken into account when quantifying the amount of change in methylation, for example in form of a branch length in a phylogeny of cell types. RESULTS: We propose a probabilistic model (the IWE-SSE model) of methylation dynamics that accounts for simultaneous methylation changes in multiple CpG sites belonging to the same CpG island. We further propose a Markov-chain Monte-Carlo (MCMC) method to fit this model to methylation data from cell type phylogenies and apply this method to available data from murine haematopoietic cells and from human cell lines. Combined with simulation studies, these analyses show that accounting for CpG island wide methylation changes has a strong effect on the inferred branch lengths and leads to a significantly better model fit for the methylation data from murine haematopoietic cells and human cell lines. CONCLUSION: The MCMC based parameter estimation method for the IWE-SSE model in combination with our MCMC based inference method allows to quantify the amount of methylation changes at single CpG sites as well as on entire CpG islands. Accounting for changes affecting entire islands can lead to more accurate branch length estimation in the presence of simultaneous methylation change.


Assuntos
Ilhas de CpG , Metilação de DNA , Modelos Estatísticos , Animais , Células Sanguíneas/metabolismo , Regulação da Expressão Gênica , Humanos , Cadeias de Markov , Camundongos , Método de Monte Carlo , Filogenia
5.
Nucleic Acids Res ; 46(14): 7006-7021, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29893919

RESUMO

Cell-specific patterns of gene expression are determined by combinatorial actions of sequence-specific transcription factors at cis-regulatory elements. Studies indicate that relatively simple combinations of lineage-determining transcription factors (LDTFs) play dominant roles in the selection of enhancers that establish cell identities and functions. LDTFs require collaborative interactions with additional transcription factors to mediate enhancer function, but the identities of these factors are often unknown. We have shown that natural genetic variation between individuals has great utility for discovering collaborative transcription factors. Here, we introduce MMARGE (Motif Mutation Analysis of Regulatory Genomic Elements), the first publicly available suite of software tools that integrates genome-wide genetic variation with epigenetic data to identify collaborative transcription factor pairs. MMARGE is optimized to work with chromatin accessibility assays (such as ATAC-seq or DNase I hypersensitivity), as well as transcription factor binding data collected by ChIP-seq. Herein, we provide investigators with rationale for each step in the MMARGE pipeline and key differences for analysis of datasets with different experimental designs. We demonstrate the utility of MMARGE using mouse peritoneal macrophages, liver cells, and human lymphoblastoid cells. MMARGE provides a powerful tool to identify combinations of cell type-specific transcription factors while simultaneously interpreting functional effects of non-coding genetic variation.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/metabolismo , Linhagem Celular , DNA/química , Genômica , Heterozigoto , Homozigoto , Humanos , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Motivos de Nucleotídeos , Elementos Reguladores de Transcrição , Análise de Sequência de DNA
6.
J Anim Ecol ; 87(1): 11-23, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27730641

RESUMO

It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations.


Assuntos
Aptidão Genética , Depressão por Endogamia , Mutação , Comportamento Sexual Animal , Animais , Modelos Genéticos , Densidade Demográfica
7.
BMC Bioinformatics ; 18(1): 12, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28049428

RESUMO

BACKGROUND: A large share of agriculturally and horticulturally important plant species are polyploid. Linkage maps are used to locate associations between genes and traits by breeders and geneticists. Linkage map creation for polyploid species is not supported by standard tools. We want to overcome this limitation and validate our results with simulation studies. RESULTS: We developed PERGOLA, a deterministic and heuristic method that addresses this problem. We show that it creates correct linkage groups, marker orders and distances for simulated and real datasets. We compare it to existing tools and demonstrate that it overcomes limitations in ploidy and outperforms them in computational time and mapping accuracy. We represent linkage maps as dendrograms and show that this has advantages in the comparison of different maps. CONCLUSIONS: PERGOLA can be used successfully to calculate linkage maps for diploid and polyploid species and outperforms existing tools.


Assuntos
Mapeamento Cromossômico/métodos , Interface Usuário-Computador , Algoritmos , Ligação Genética , Internet , Poliploidia
8.
Bioinformatics ; 32(12): 1903-4, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153679

RESUMO

UNLABELLED: Simulation programs based on the coalescent efficiently generate genetic data according to a given model of evolution. We present coala, an R package for calling coalescent simulators with a unified syntax. It can execute simulations with several programs, calculate additional summary statistics and combine multiple simulations to create biologically more realistic data. AVAILABILITY AND IMPLEMENTATION: The package is publicly available on CRAN and on https://github.com/statgenlmu/coala under the conditions of the MIT license. CONTACT: metzler@bio.lmu.de.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Modelos Genéticos , Software , Simulação por Computador , Genética Populacional
9.
BMC Genomics ; 17: 672, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27554097

RESUMO

BACKGROUND: Association studies are an essential part of modern plant breeding, but are limited for polyploid crops. The increased number of possible genotype classes complicates the differentiation between them. Available methods are limited with respect to the ploidy level or data producing technologies. While genotype classification is an established noise reduction step in diploids, it gains complexity with increasing ploidy levels. Eventually, the errors produced by misclassifications exceed the benefits of genotype classes. Alternatively, continuous genotype values can be used for association analysis in higher polyploids. We associated continuous genotypes to three different traits and compared the results to the output of the genotype caller SuperMASSA. Linear, Bayesian and partial least squares regression were applied, to determine if the use of continuous genotypes is limited to a specific method. A disease, a flowering and a growth trait with h (2) of 0.51, 0.78 and 0.91 were associated with a hexaploid chrysanthemum genotypes. The data set consisted of 55,825 probes and 228 samples. RESULTS: We were able to detect associating probes using continuous genotypes for multiple traits, using different regression methods. The identified probe sets were overlapping, but not identical between the methods. Baysian regression was the most restrictive method, resulting in ten probes for one trait and none for the others. Linear and partial least squares regression led to numerous associating probes. Association based on genotype classes resulted in similar values, but missed several significant probes. A simulation study was used to successfully validate the number of associating markers. CONCLUSIONS: Association of various phenotypic traits with continuous genotypes is successful with both uni- and multivariate regression methods. Genotype calling does not improve the association and shows no advantages in this study. Instead, use of continuous genotypes simplifies the analysis, saves computational time and results more potential markers.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Teorema de Bayes , Chrysanthemum/genética , Biologia Computacional/métodos , Flores/genética , Redes Reguladoras de Genes , Genótipo , Análise dos Mínimos Quadrados , Fenótipo , Poliploidia
10.
Bioinformatics ; 31(10): 1680-2, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25596205

RESUMO

MOTIVATION: Coalescent-based simulation software for genomic sequences allows the efficient in silico generation of short- and medium-sized genetic sequences. However, the simulation of genome-size datasets as produced by next-generation sequencing is currently only possible using fairly crude approximations. RESULTS: We present the sequential coalescent with recombination model (SCRM), a new method that efficiently and accurately approximates the coalescent with recombination, closing the gap between current approximations and the exact model. We present an efficient implementation and show that it can simulate genomic-scale datasets with an essentially correct linkage structure.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Modelos Genéticos , Recombinação Genética , Software , Algoritmos , Simulação por Computador , Ligação Genética , Genômica/métodos
11.
J Theor Biol ; 372: 168-78, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25769943

RESUMO

The emergence of self-organizing behavior in ants has been modeled in various theoretical approaches in the past decades. One model explains experimental observations in which Argentine ants (Linepithema humile) selected the shorter of two alternative paths from their nest to a food source (shortest path experiments). This model serves as an important example for the emergence of collective behavior and self-organization in biological systems. In addition, it inspired the development of computer algorithms for optimization problems called ant colony optimization (ACO). In the model, a choice function describing how ants react to different pheromone concentrations is fundamental. However, the parameters of the choice function were not deduced experimentally but freely adapted so that the model fitted the observations of the shortest path experiments. Thus, important knowledge was lacking about crucial model assumptions. A recent study on the Argentine ant provided this information by measuring the response of the ants to varying pheromone concentrations. In said study, the above mentioned choice function was fitted to the experimental data and its parameters were deduced. In addition, a psychometric function was fitted to the data and its parameters deduced. Based on these findings, it is possible to test the shortest path model by applying realistic parameter values. Here we present the results of such tests using Monte Carlo simulations of shortest path experiments with Argentine ants. We compare the choice function and the psychometric function, both with parameter values deduced from the above-mentioned experiments. Our results show that by applying the psychometric function, the shortest path experiments can be explained satisfactorily by the model. The study represents the first example of how psychophysical theory can be used to understand and model collective foraging behavior of ants based on trail pheromones. These findings may be important for other models of pheromone guided ant behavior and might inspire improved ACO algorithms.


Assuntos
Formigas/fisiologia , Comportamento Alimentar , Feromônios/fisiologia , Comportamento Social , Algoritmos , Animais , Comportamento Animal , Simulação por Computador , Modelos Biológicos , Método de Monte Carlo , Probabilidade , Psicometria , Psicofísica
12.
BMC Bioinformatics ; 15: 265, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25099134

RESUMO

BACKGROUND: Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data. Although this problem may be efficiently solved when only two sequences are considered, the exact inference of the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope with the high computational expenses, approximate heuristic methods have been proposed that address the problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods however are not flexible to change the alignment of an already aligned group of sequences in the view of new data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign, a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set. The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting alignments. RESULTS: We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign results in more substantial improvement in cases where the starting alignment is of relatively inferior quality or when the input sequences are harder to align. CONCLUSIONS: The proposed profile-based meta-alignment approach seems to be a promising and computationally efficient method that can be combined with practically all popular alignment methods and may lead to significant improvements in the generated alignments.


Assuntos
Biologia Computacional/métodos , Alinhamento de Sequência/métodos , Algoritmos , Controle de Qualidade , Software
13.
Bioinformatics ; 28(17): 2242-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22796961

RESUMO

MOTIVATION: Today many non-coding RNAs are known to play an active role in various important biological processes. Since RNA's functionality is correlated with specific structural motifs that are often conserved in phylogenetically related molecules, computational prediction of RNA structure should ideally be based on a set of homologous primary structures. But many available RNA secondary structure prediction programs that use sequence alignments do not consider pseudoknots or their estimations consist on a single structure without information on uncertainty. RESULTS: In this article we present a method that takes advantage of the evolutionary history of a group of aligned RNA sequences for sampling consensus secondary structures, including pseudoknots, according to their approximate posterior probability. We investigate the benefit of using evolutionary history and demonstrate the competitiveness of our method compared with similar methods based on RNase P RNA sequences and simulated data. AVAILABILITY: PhyloQFold, a C + + implementation of our method, is freely available from http://evol.bio.lmu.de/_statgen/software/phyloqfold/.


Assuntos
Algoritmos , Teorema de Bayes , Modelos Genéticos , RNA/química , RNA/genética , Sequência de Bases , Evolução Molecular , Conformação de Ácido Nucleico , RNA não Traduzido/química , RNA não Traduzido/genética , Ribonuclease P/genética , Alinhamento de Sequência , Análise de Sequência de RNA/métodos
14.
Mol Ecol ; 22(7): 1904-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23398547

RESUMO

The microbial communities inhabiting the mammalian intestinal tract play an important role in diverse aspects of host biology. However, little is known regarding the forces shaping variation in these communities and their influence on host fitness. To shed light on the contributions of host genetics, transmission and geography to diversity in microbial communities between individuals, we performed a survey of intestinal microbial communities in a panel of 121 house mice derived from eight locations across Western Europe using pyrosequencing of the bacterial 16S rRNA gene. The host factors studied included population structure estimated by microsatellite loci and mitochondrial DNA, genetic distance and geography. To determine whether host tissue (mucosa)-associated communities display properties distinct from those of the lumen, both the caecal mucosa and contents were examined. We identified Bacteroides, Robinsoniella and Helicobacter as the most abundant genera in both the caecal content and mucosa-associated communities of wild house mice. Overall, we found geography to be the most significant factor explaining patterns of diversity in the intestinal microbiota, with a comparatively weaker influence of host population structure and genetic distance. Furthermore, the influence of host genetic distance was limited to the mucosa communities, consistent with this environment being more intimately coupled to the host.


Assuntos
Intestinos/microbiologia , Metagenoma/genética , Camundongos/microbiologia , Animais , DNA Bacteriano/genética , DNA Mitocondrial/genética , Europa (Continente) , França , Interação Gene-Ambiente , Loci Gênicos , Variação Genética , Alemanha , Repetições de Microssatélites , Dados de Sequência Molecular , Filogeografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Theor Popul Biol ; 84: 25-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23231882

RESUMO

Species introductions to new habitats can cause a decline in the population size of competing native species and consequently also in their genetic diversity. We are interested in why these adverse effects are weak in some cases whereas in others the native species declines to the point of extinction. While the introduction rate and the growth rate of the introduced species in the new environment clearly have a positive relationship with invasion success and impact, the influence of competition is poorly understood. Here, we investigate how the intensity of interspecific competition influences the persistence time of a native species in the face of repeated and ongoing introductions of the nonnative species. We analyze two stochastic models: a model for the population dynamics of both species and a model that additionally includes the population genetics of the native species at a locus involved in its adaptation to a changing environment. Counterintuitively, both models predict that the persistence time of the native species is lowest for an intermediate intensity of competition. This phenomenon results from the opposing effects of competition at different stages of the invasion process: With increasing competition intensity more introduction events are needed until a new species can establish, but increasing competition also speeds up the exclusion of the native species by an established nonnative competitor. By comparing the ecological and the eco-genetic model, we detect and quantify a synergistic feedback between ecological and genetic effects.


Assuntos
Interação Gene-Ambiente , Espécies Introduzidas , Dinâmica Populacional , Processos Estocásticos
16.
Theor Popul Biol ; 90: 1-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24051161

RESUMO

Beneficial mutations can co-occur when population structure slows down adaptation. Here, we consider the process of adaptation in asexual populations distributed over several locations ("islands"). New beneficial mutations arise at constant rate ub, and each mutation has the same selective advantage s>0. We assume that populations evolve within islands according to the successional mutations regime of Desai and Fisher (2007), that is, the time to local fixation of a mutation is short compared to the expected waiting time until the next mutation occurs. To study the rate of adaptation, we introduce an approximate model, the successional mutations (SM) model, which can be simulated efficiently and yields accurate results for a wide range of parameters. In the SM model, mutations fix instantly within islands, and migrants can take over the destination island if they are fitter than the residents. For the special case of a population distributed equally across two islands with population size N, we approximate the model further for small and large migration rates in comparison to the mutation rate. These approximations lead to explicit formulas for the rate of adaptation which fit the original model for a large range of parameter values. For the d island case we provide some heuristics on how to extend the explicit formulas and check these with computer simulations. We conclude that the SM model is a good approximation of the adaptation process in a structured population, at least if mutation or migration is limited.


Assuntos
Adaptação Fisiológica , Dinâmica Populacional , Modelos Teóricos , Mutação
17.
Sci Adv ; 9(13): eadd0688, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000877

RESUMO

Human land modification is a known driver of animal-to-human transmission of infectious agents (zoonotic spillover). Infection prevalence in the reservoir is a key predictor of spillover, but landscape-level associations between the intensity of land modification and infection rates in wildlife remain largely untested. Bat-borne coronaviruses have caused three major disease outbreaks in humans: severe acute respiratory syndrome (SARS), Middle East respiratory syndrome, and coronavirus disease 2019 (COVID-19). We statistically link high-resolution land modification data with bat coronavirus surveillance records and show that coronavirus prevalence significantly increases with the intensity of human impact across all climates and levels of background biodiversity. The most significant contributors to the overall human impact are agriculture, deforestation, and mining. Regions of high predicted bat coronavirus prevalence coincide with global disease hotspots, suggesting that infection prevalence in wildlife may be an important factor underlying links between human land modification and zoonotic disease emergence.


Assuntos
COVID-19 , Quirópteros , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , COVID-19/epidemiologia , Prevalência , Animais Selvagens , Filogenia
18.
Int J Parasitol ; 53(13): 751-761, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37516335

RESUMO

Ticks are important vectors of human and animal pathogens, but many questions remain unanswered regarding their taxonomy. Molecular sequencing methods have allowed research to start understanding the evolutionary history of even closely related tick species. Ixodes inopinatus is considered a sister species and highly similar to Ixodes ricinus, an important vector of many tick-borne pathogens in Europe, but identification between these species remains ambiguous with disagreement on the geographic extent of I. inopinatus. In 2018-2019, 1583 ticks were collected from breeding great tits (Parus major) in southern Germany, of which 45 were later morphologically identified as I. inopinatus. We aimed to confirm morphological identification using molecular tools. Utilizing two genetic markers (16S rRNA, TROSPA) and whole genome sequencing of specific ticks (n = 8), we were able to determine that German samples, morphologically identified as I. inopinatus, genetically represent I. ricinus regardless of previous morphological identification, and most likely are not I. ricinus/I. inopinatus hybrids. Further, our results showed that the entire mitochondrial genome, let alone singular mitochondrial genes (i.e., 16S), is unable to distinguish between I. ricinus and I. inopinatus. Our results suggest that I. inopinatus is geographically isolated as a species (northern Africa and potentially southern Spain and Portugal) and brings into question whether I. inopinatus exists in central Europe. Our results highlight the probable existence of I. inopinatus and the power of utilizing genomic data in answering questions regarding tick taxonomy.


Assuntos
Ixodes , Humanos , Animais , Ixodes/genética , RNA Ribossômico 16S/genética , Europa (Continente) , Alemanha , Portugal
19.
New Phytol ; 195(4): 938-950, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22765273

RESUMO

The family Araceae (3790 species, 117 genera) has one of the oldest fossil records among angiosperms. Ecologically, members of this family range from free-floating aquatics (Pistia and Lemna) to tropical epiphytes. Here, we infer some of the macroevolutionary processes that have led to the worldwide range of this family and test how the inclusion of fossil (formerly occupied) geographical ranges affects biogeographical reconstructions. Using a complete genus-level phylogeny from plastid sequences and outgroups representing the 13 other Alismatales families, we estimate divergence times by applying different clock models and reconstruct range shifts under different models of past continental connectivity, with or without the incorporation of fossil locations. Araceae began to diversify in the Early Cretaceous (when the breakup of Pangea was in its final stages), and all eight subfamilies existed before the K/T boundary. Early lineages persist in Laurasia, with several relatively recent entries into Africa, South America, South-East Asia and Australia. Water-associated habitats appear to be ancestral in the family, and DNA substitution rates are especially high in free-floating Araceae. Past distributions inferred when fossils are included differ in nontrivial ways from those without fossils. Our complete genus-level time-scale for the Araceae may prove to be useful for ecological and physiological studies.


Assuntos
Araceae/genética , Ecossistema , Fósseis , Geografia , Modelos Genéticos , Calibragem , Variação Genética , História Antiga , Funções Verossimilhança , Dispersão de Sementes , Fatores de Tempo
20.
Breast Cancer Res ; 13(5): R97, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21978456

RESUMO

INTRODUCTION: Current prognostic gene expression profiles for breast cancer mainly reflect proliferation status and are most useful in ER-positive cancers. Triple negative breast cancers (TNBC) are clinically heterogeneous and prognostic markers and biology-based therapies are needed to better treat this disease. METHODS: We assembled Affymetrix gene expression data for 579 TNBC and performed unsupervised analysis to define metagenes that distinguish molecular subsets within TNBC. We used n = 394 cases for discovery and n = 185 cases for validation. Sixteen metagenes emerged that identified basal-like, apocrine and claudin-low molecular subtypes, or reflected various non-neoplastic cell populations, including immune cells, blood, adipocytes, stroma, angiogenesis and inflammation within the cancer. The expressions of these metagenes were correlated with survival and multivariate analysis was performed, including routine clinical and pathological variables. RESULTS: Seventy-three percent of TNBC displayed basal-like molecular subtype that correlated with high histological grade and younger age. Survival of basal-like TNBC was not different from non basal-like TNBC. High expression of immune cell metagenes was associated with good and high expression of inflammation and angiogenesis-related metagenes were associated with poor prognosis. A ratio of high B-cell and low IL-8 metagenes identified 32% of TNBC with good prognosis (hazard ratio (HR) 0.37, 95% CI 0.22 to 0.61; P < 0.001) and was the only significant predictor in multivariate analysis including routine clinicopathological variables. CONCLUSIONS: We describe a ratio of high B-cell presence and low IL-8 activity as a powerful new prognostic marker for TNBC. Inhibition of the IL-8 pathway also represents an attractive novel therapeutic target for this disease.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adulto , Linfócitos B/patologia , Linfócitos B/fisiologia , Neoplasias da Mama/mortalidade , Feminino , Humanos , Interleucina-8/genética , Pessoa de Meia-Idade , Análise Multivariada , Neoplasia de Células Basais/genética , Neoplasia de Células Basais/patologia , Valor Preditivo dos Testes , Taxa de Sobrevida , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa