Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(24): 6009-6025, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37550544

RESUMO

A multi-residue trace analytical method is presented to accurately quantify 146 currently used pesticides in (agricultural) soils with varying soil properties. Pesticides were extracted using an optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach and chemical analysis was carried out by liquid chromatography coupled to tandem mass spectrometry (triple quadrupole). Quantification was based on matrix-matched internal standards calibration, using 95 isotopically labeled analyte analogues. In contrast to the common approach of method validation using soils freshly spiked with analytes shortly before the extraction, our method is additionally validated via an in-house prepared partly aged soil, which contains all target pesticides and via agricultural field soils with native pesticide residues. The developed method is highly sensitive (median method limit of quantification: 0.2 ng/g), precise (e.g., median intra-day and inter-day method precision both ~ 4% based on field soils), and true ((i) quantified pesticide concentrations of the partly aged soil remained stable during 6 months, were close to the initially spiked nominal concentration of 10 ng/g, and thus can be used to review trueness in the future; (ii) median freshly spiked relative recovery: 103%; and (iii) participation in a ring trial: median z-scores close to one (good to satisfactory result)). Its application to selected Swiss (agricultural) soils revealed the presence of in total 77 different pesticides with sum concentrations up to 500 ng/g. The method is now in use for routine soil monitoring as part of the Swiss Action Plan for Risk Reduction and Sustainable Use of Plant Protection Products.

2.
Chimia (Aarau) ; 77(11): 758-763, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047843

RESUMO

Chemical elements such as copper and molybdenum are essential for animal and human health but may become toxic at elevated concentrations depending on the exposure and intake rate. Other elements such as mercury pose a threat to human health at already low concentrations. The soil acts as the main source of these elements for plant uptake and is thus driving accumulation along the food chain. However, in Switzerland, no nationwide information on elemental distributions in soils has existed up to now. The geochemical soil atlas of Switzerland will fill this gap by presenting the concentration ranges and the spatial distribution of 20 elements in the topsoil. In this summary, we present the methodological approaches and some main findings of the atlas with a focus on toxic elements as well as elements that can be or are toxic at higher concentrations.


Assuntos
Cobre , Cadeia Alimentar , Animais , Humanos , Suíça , Transporte Biológico , Solo
3.
Chimia (Aarau) ; 77(11): 750-757, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047842

RESUMO

Synthetic pesticides are widely applied in modern agriculture, where they are used against diseases, pests, and weeds to secure crop yield and quality. However, their intensive application has led to widespread contamination of the environment, including soils. Due to their inherent toxicity, they might pose a risk to soil health by causing harm to non-target organisms and disrupting ecosystem services in both agricultural and other exposed soils. Following the Swiss National Action Plan on the reduction of pesticide risks, Agroscope has conducted several soil monitoring studies that are briefly presented here. All of them resort to different multi-residue trace analytical approaches to simultaneously quantify up to about 150 modern pesticides by either accelerated solvent, or Quick, Easy, Cheap, Efficient, Rugged, Safe (QuEChERS) extraction, followed by separation and detection with liquid chromatography-triple quadrupole mass spectrometry. While partly still in progress, our investigations led to the following major findings this far: Multiple pesticides are commonly present in soils, with individual concentrations in agricultural soils often reaching up to a few tens of µg/kg. Pesticide occurrence and concentrations in agricultural soils primarily depend on land use, land use history and cultivated crops. Pesticides can prevail much longer than predicted by their half-lives, and were found in soils even decades after conversion from conventional to organic farming. Corresponding residual fractions can be in the order of a few percent of the originally applied amounts. We further found negative associations of pesticide residues with the abundance of beneficial soil life, underpinning their potential risk to the fertility of agricultural soils. Traces of pesticides are also detected in soils to which they were never applied, indicating contamination, e.g., via spray drift or atmospheric deposition. These results confirm the general notion of both scientists and legislators that prospective risk assessments (RA; as executed during registration and use authorization) should be confirmed and adjusted by retrospective RA (e.g., by environmental monitoring studies of currently used compounds) to jointly lead to an overall reduced environmental risk of pesticides.


Assuntos
Praguicidas , Solo , Suíça , Ecossistema , Estudos Prospectivos , Estudos Retrospectivos , Agricultura
4.
Mol Ecol ; 30(17): 4305-4320, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34160856

RESUMO

Despite the importance of soil microorganisms for ecosystem services, long-term surveys of their communities are largely missing. Using metabarcoding, we assessed temporal dynamics of soil bacterial and fungal communities in three land-use types, i.e., arable land, permanent grassland, and forest, over five years. Soil microbial communities remained relatively stable and differences over time were smaller than those among sites. Temporal variability was highest in arable soils. Indications for consistent shifts in community structure over five years were only detected at one site for bacteria and at two sites for fungi, which provided further support for long-term stability of soil microbial communities. A sliding window analysis was applied to assess the effect of OTU abundance on community structures. Partial communities with decreasing OTU abundances revealed a gradually decreasing structural similarity with entire communities. This contrasted with the steep decline of OTU abundances, as subsets of rare OTUs (<0.01%) revealed correlations of up to 0.97 and 0.81 with the entire bacterial and fungal communities. Finally, 23.4% of bacterial and 19.8% of fungal OTUs were identified as scarce, i.e., neither belonging to site-cores nor correlating to environmental factors, while 67.3% of bacterial and 64.9% of fungal OTUs were identified as rare but not scarce. Our results demonstrate high stability of soil microbial communities in their abundant and rare fractions over five years. This provides a step towards defining site-specific normal operating ranges of soil microbial communities, which is a prerequisite for detecting community shifts that may occur due to changing environmental conditions or anthropogenic activities.


Assuntos
Microbiota , Micobioma , Bactérias/genética , Fungos/genética , Microbiota/genética , Micobioma/genética , Solo , Microbiologia do Solo
5.
Environ Pollut ; 331(Pt 2): 121892, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247768

RESUMO

The application of synthetic pesticides to agricultural fields for the protection of crops leads to the formation of residues in soils. While the short-term behavior of pesticide residues in soils after an application is generally known from laboratory and field studies required for authorization (prospective risk assessments), there is still a lack of in-situ observations that address their long-term fate. Long-term soil monitoring programs, with comprehensive site-specific records of pesticide application data, constitute an invaluable, complementary, retrospective exposure assessment tool to address this gap. Considering the pesticide applications over the past 10-15 years, this study assessed the occurrence of pesticides in agricultural soils of Switzerland and put their presence or absence, as well as their concentrations, in the context of their previous application. The results showed that pesticides could also be detected at sites without a connection to previous applications and that small residual mass fractions of pesticides, even of some non-persistent compounds, were found in soils, years or decades after their last application. This finding points to an environmental issue that may not be adequately captured in prospective risk assessment and calls attention to the need for comprehensive long-term recording and monitoring as a complementary retrospective exposure assessment.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Resíduos de Praguicidas/análise , Solo/química , Fazendas , Estudos Prospectivos , Estudos Retrospectivos , Monitoramento Ambiental/métodos , Agricultura/métodos , Praguicidas/análise , Poluentes do Solo/análise
6.
FEMS Microbiol Ecol ; 97(12)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34940884

RESUMO

Soil microbial diversity has major influences on ecosystem functions and services. However, due to its complexity and uneven distribution of abundant and rare taxa, quantification of soil microbial diversity remains challenging and thereby impeding its integration into long-term monitoring programs. Using metabarcoding, we analyzed soil bacterial and fungal communities at 30 long-term soil monitoring sites from the three land-use types arable land, permanent grassland, and forest with a yearly sampling between snowmelt and first fertilization over five years. Unlike soil microbial biomass and alpha-diversity, microbial community compositions and structures were site- and land-use-specific with CAP reclassification success rates of 100%. The temporally stable site core communities included 38.5% of bacterial and 33.1% of fungal OTUs covering 95.9% and 93.2% of relative abundances. We characterized bacterial and fungal core communities and their land-use associations at the family-level. In general, fungal families revealed stronger land-use associations as compared to bacteria. This is likely due to a stronger vegetation effect on fungal core taxa, while bacterial core taxa were stronger related to soil properties. The assessment of core communities can be used to form cultivation-independent reference lists of microbial taxa, which may facilitate the development of microbial indicators for soil quality and the use of soil microbiota for long-term soil biomonitoring.


Assuntos
Microbiota , Solo , Bactérias/genética , Fungos/genética , Humanos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa