Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(16): 8325-8335, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32236271

RESUMO

Hard X-ray spectroscopy selectively probes metal sites in complex environments. Resonant inelastic X-ray scattering (RIXS) makes it is possible to directly study metal-ligand interactions through local valence excitations. Here multiconfigurational wavefunction simulations are used to model valence K pre-edge RIXS for three metal-hexacyanide complexes by coupling the electric dipole-forbidden excitations with dipole-allowed valence-to-core emission. Comparisons between experimental and simulated spectra makes it possible to evaluate the simulation accuracy and establish a best-modeling practice. The calculations give correct descriptions of all LMCT excitations in the spectra, although energies and intensities are sensitive to the description of dynamical electron correlation. The consistent treatment of all complexes shows that simulations can rationalize spectral features. The dispersion in the manganese(iii) spectrum comes from unresolved multiple resonances rather than fluorescence, and the splitting is mainly caused by differences in spatial orientation between holes and electrons. The simulations predict spectral features that cannot be resolved in current experimental data sets and the potential for observing d-d excitations is also explored. The latter can be of relevance for non-centrosymmetric systems with more intense K pre-edges. These ab initio simulations can be used to both design and interpret high-resolution X-ray scattering experiments.

2.
Nature ; 509(7500): 345-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805234

RESUMO

Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2'-bipyridine)3](2+), where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)3](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.

3.
J Chem Phys ; 132(13): 134502, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20387936

RESUMO

We use hard x-ray resonant inelastic x-ray scattering (RIXS) and density functional theory (DFT) calculations to characterize charge transfer excitations in K(3)Mn(CN)(6). The combination of RIXS measurements and DFT calculations allows us to characterize the strength of the ligand-metal electronic interaction and assign the Raman resonances in the RIXS spectra to charge transfer excitations. With x-ray excitation energies resonant with the T(2g) and E(g) pre-edge peaks derived predominantly from the Mn 3d orbitals, we observe Raman resonances in the energy transfer range from 2 to 12 eV, which results from the filling of the 1s core-hole from T(1u)-symmetry occupied orbitals. DFT calculations indicate that these orbitals exhibit primarily ligand character, supporting the assignment of the energy transfer resonances to ligand-to-metal charge transfer excitations. Our RIXS measurements and DFT calculations also indicate that the E(g)-orbital spin-splits by roughly 0.8 eV, though we do not cleanly resolve the two absorption peaks in the RIXS spectra. We also see evidence for a metal-to-ligand charge transfer (MLCT) excitation when exciting with a 6545.0 eV incident photon, roughly 4 eV above the E(g) absorption peaks. The 6545.0 eV resonant emission spectrum shows a 6.0 eV energy transfer resonance, which corresponds to a final state hole in the T(2g) partially occupied orbital. DFT calculations indicate that excitation at 6545.0 eV populates an unoccupied T(1u)-symmetry orbital of primarily ligand character. Given the predominantly metal character of the final state hole, we assign the 6.0 eV Raman resonance to a MLCT excitation. These measurements demonstrate the ability of hard x-ray RIXS to characterize the valence electronic structure of coordination compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa