Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Cell ; 163(2): 445-55, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26451488

RESUMO

RNA-directed DNA methylation in Arabidopsis thaliana is driven by the plant-specific RNA Polymerase IV (Pol IV). It has been assumed that a Pol IV transcript can give rise to multiple 24-nt small interfering RNAs (siRNAs) that target DNA methylation. Here, we demonstrate that Pol IV-dependent RNAs (P4RNAs) from wild-type Arabidopsis are surprisingly short in length (30 to 40 nt) and mirror 24-nt siRNAs in distribution, abundance, strand bias, and 5'-adenine preference. P4RNAs exhibit transcription start sites similar to Pol II products and are featured with 5'-monophosphates and 3'-misincorporated nucleotides. The 3'-misincorporation preferentially occurs at methylated cytosines on the template DNA strand, suggesting a co-transcriptional feedback to siRNA biogenesis by DNA methylation to reinforce silencing locally. These results highlight an unusual mechanism of Pol IV transcription and suggest a "one precursor, one siRNA" model for the biogenesis of 24-nt siRNAs in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Adenina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Biológicos , Sítio de Iniciação de Transcrição
2.
Plant Cell ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39442012

RESUMO

Reproductive phasiRNAs (phased, small interfering RNAs), produced from numerous PHAS loci, are essential for plant anther development. PHAS transcripts are enriched on endoplasmic reticulum-bound ribosomes in maize (Zea mays), but the impact of ribosome binding on phasiRNA biogenesis remains elusive. Through ribosome profiling of maize anthers at 10 developmental stages, we demonstrated that 24-PHAS transcripts are bound by ribosomes, with patterns corresponding to the timing and abundance of 24-PHAS transcripts. Ribosome binding to 24-PHAS transcripts is conserved among different maize inbred lines, with ribosomes enriched upstream of miR2275 target sites. We detected short open reading frames (sORFs) in the ribosome-binding regions of some 24-PHAS transcripts and observed a 3-nt periodicity in most sORFs, but mass spectrometry failed to detect peptides corresponding to the sORFs. Deletion of the entire ribosome-binding region of 24PHAS_NO296 locus eliminated ribosome binding and decreased 24-nt phasiRNA production, without affecting 24PHAS_NO296 transcript levels. In contrast, disrupting only the sORFs in 24PHAS_NO296 did not substantially affect the generation of 24-nt phasiRNAs. A newly formed sORF in these mutants may have re-directed ribosome binding to its transcripts. Overall, these findings demonstrate that sORFs facilitate ribosome binding to 24-PHAS transcripts, thereby promoting phasiRNA biogenesis in meiotic anthers.

3.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739785

RESUMO

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Assuntos
Meiose , RNA de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Meiose/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Oryza/genética , Oryza/metabolismo
4.
Plant Cell ; 35(9): 3398-3412, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37309669

RESUMO

Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.


Assuntos
Plastídeos , RNA de Cadeia Dupla , Interferência de RNA , Transgenes/genética , Plastídeos/genética , Plastídeos/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , Inativação Gênica , Nicotiana/genética , Nicotiana/metabolismo
5.
Plant J ; 118(6): 1848-1863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488203

RESUMO

Noncoding and coding RNAs are key regulators of plant growth, development, and stress responses. To investigate the types of transcripts accumulated during the vegetative to reproductive transition and floral development in the Coffea arabica L., we sequenced small RNA libraries from eight developmental stages, up to anthesis. We combined these data with messenger RNA and PARE sequencing of two important development stages that marks the transition of an apparent latent to a rapid growth stage. In addition, we took advantage of multiple in silico tools to characterize genomic loci producing small RNAs such as phasiRNAs, miRNAs, and tRFs. Our differential and co-expression analysis showed that some types of small RNAs such as tRNAs, snoRNAs, snRNAs, and phasiRNAs preferentially accumulate in a stage-specific manner. Members of the miR482/miR2118 superfamily and their 21-nucleotide phasiRNAs originating from resistance genes show a robust co-expression pattern that is maintained across all the evaluated developmental stages. Finally, the majority of miRNAs accumulate in a family stage-specific manner, related to modulated hormonal responses and transcription factor expression.


Assuntos
Coffea , Flores , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA de Plantas , Coffea/genética , Coffea/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , RNA de Plantas/genética , MicroRNAs/genética , Tetraploidia
6.
Plant Physiol ; 194(4): 2354-2371, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38060676

RESUMO

Temperature-sensitive male sterility is one of the core components for hybrid rice (Oryza sativa) breeding based on the 2-line system. We previously found that knockout of ARGONAUTE 1d (AGO1d) causes temperature-sensitive male sterility in rice by influencing phased small interfering RNA (phasiRNA) biogenesis and function. However, the specific phasiRNAs and their targets underlying the temperature-sensitive male sterility in the ago1d mutant remain unknown. Here, we demonstrate that the ago1d mutant displays normal female fertility but complete male sterility at low temperature. Through a multiomics analysis of small RNA (sRNA), degradome, and transcriptome, we found that 21-nt phasiRNAs account for the greatest proportion of the 21-nt sRNA species in rice anthers and are sensitive to low temperature and markedly downregulated in the ago1d mutant. Moreover, we found that 21-nt phasiRNAs are essential for the mRNA cleavage of a set of fertility- and cold tolerance-associated genes, such as Earlier Degraded Tapetum 1 (EDT1), Tapetum Degeneration Retardation (TDR), OsPCF5, and OsTCP21, directly or indirectly determined by AGO1d-mediated gene silencing. The loss of function of 21-nt phasiRNAs can result in upregulation of their targets and causes varying degrees of defects in male fertility and grain setting. Our results highlight the essential functions of 21-nt phasiRNAs in temperature-sensitive male sterility in rice and suggest their promising application in 2-line hybrid rice breeding in the future.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Oryza/genética , Oryza/metabolismo , Nucleotídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , RNA de Plantas/genética , Melhoramento Vegetal , RNA Interferente Pequeno/genética , Regulação da Expressão Gênica de Plantas
7.
Plant Cell ; 34(5): 1863-1881, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35171271

RESUMO

Previously, we have shown that apoplastic wash fluid (AWF) purified from Arabidopsis leaves contains small RNAs (sRNAs). To investigate whether these sRNAs are encapsulated inside extracellular vesicles (EVs), we treated EVs isolated from Arabidopsis leaves with the protease trypsin and RNase A, which should degrade RNAs located outside EVs but not those located inside. These analyses revealed that apoplastic RNAs are mostly located outside and are associated with proteins. Further analyses of these extracellular RNAs (exRNAs) revealed that they include both sRNAs and long noncoding RNAs (lncRNAs), including circular RNAs (circRNAs). We also found that exRNAs are highly enriched in the posttranscriptional modification N6-methyladenine (m6A). Consistent with this, we identified a putative m6A-binding protein in AWF, GLYCINE-RICH RNA-BINDING PROTEIN 7 (GRP7), as well as the sRNA-binding protein ARGONAUTE2 (AGO2). These two proteins coimmunoprecipitated with lncRNAs, including circRNAs. Mutation of GRP7 or AGO2 caused changes in both the sRNA and lncRNA content of AWF, suggesting that these proteins contribute to the secretion and/or stabilization of exRNAs. We propose that exRNAs located outside of EVs mediate host-induced gene silencing, rather than RNA located inside EVs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vesículas Extracelulares , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , RNA Circular/genética , RNA Longo não Codificante/genética
8.
Plant Cell ; 34(4): 1207-1225, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35018475

RESUMO

The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix-loop-helix genes Ms23, Ms32, basic helix-loop-helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Regulação da Expressão Gênica de Plantas/genética , Pólen/genética , Reprodução , Fatores de Transcrição/genética , Zea mays/genética
9.
Plant Cell ; 34(1): 503-513, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34648025

RESUMO

Epigenomics is the study of molecular signatures associated with discrete regions within genomes, many of which are important for a wide range of nuclear processes. The ability to profile the epigenomic landscape associated with genes, repetitive regions, transposons, transcription, differential expression, cis-regulatory elements, and 3D chromatin interactions has vastly improved our understanding of plant genomes. However, many epigenomic and single-cell genomic assays are challenging to perform in plants, leading to a wide range of data quality issues; thus, the data require rigorous evaluation prior to downstream analyses and interpretation. In this commentary, we provide considerations for the evaluation of plant epigenomics and single-cell genomics data quality with the aim of improving the quality and utility of studies using those data across diverse plant species.


Assuntos
Epigenômica , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , Genoma de Planta/genética , Plantas/genética , Controle de Qualidade
10.
Plant J ; 113(1): 160-173, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440497

RESUMO

The anther-enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non-coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21- or 24-nucleotide phasiRNA loci (referred to as 21- or 24-PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21- or 24-PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans-activation assays in maize protoplasts of individual TFs using bulk-protoplast RNA-sequencing showed that two of the TFs coexpressed with 21-PHAS loci could activate several 21-nucleotide phasiRNA pathway genes but not transcription of 21-PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24-PHAS loci using single-cell (protoplast) RNA-sequencing, did not detect reproducible activation of either 21-PHAS or 24-PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci.


Assuntos
MicroRNAs , Zea mays , Zea mays/genética , RNA Interferente Pequeno/genética , Sequência de Bases , Poaceae/genética , Nucleotídeos , Regulação da Expressão Gênica de Plantas/genética , RNA de Plantas/genética , MicroRNAs/genética
11.
Plant Biotechnol J ; 22(7): 2020-2032, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421616

RESUMO

P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.


Assuntos
Fertilidade , Homeostase , Oryza , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Espécies Reativas de Oxigênio , Oryza/genética , Oryza/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fertilidade/genética , Pólen/genética , Pólen/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas , Temperatura , Luz , Fotoperíodo
12.
Plant Physiol ; 192(2): 1183-1203, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36869858

RESUMO

Several protein families participate in the biogenesis and function of small RNAs (sRNAs) in plants. Those with primary roles include Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins. Protein families such as double-stranded RNA-binding (DRB), SERRATE (SE), and SUPPRESSION OF SILENCING 3 (SGS3) act as partners of DCL or RDR proteins. Here, we present curated annotations and phylogenetic analyses of seven sRNA pathway protein families performed on 196 species in the Viridiplantae (aka green plants) lineage. Our results suggest that the RDR3 proteins emerged earlier than RDR1/2/6. RDR6 is found in filamentous green algae and all land plants, suggesting that the evolution of RDR6 proteins coincides with the evolution of phased small interfering RNAs (siRNAs). We traced the origin of the 24-nt reproductive phased siRNA-associated DCL5 protein back to the American sweet flag (Acorus americanus), the earliest diverged, extant monocot species. Our analyses of AGOs identified multiple duplication events of AGO genes that were lost, retained, or further duplicated in subgroups, indicating that the evolution of AGOs is complex in monocots. The results also refine the evolution of several clades of AGO proteins, such as AGO4, AGO6, AGO17, and AGO18. Analyses of nuclear localization signal sequences and catalytic triads of AGO proteins shed light on the regulatory roles of diverse AGOs. Collectively, this work generates a curated and evolutionarily coherent annotation for gene families involved in plant sRNA biogenesis/function and provides insights into the evolution of major sRNA pathways.


Assuntos
Embriófitas , MicroRNAs , Filogenia , RNA Interferente Pequeno/genética , Plantas/genética , Plantas/metabolismo , MicroRNAs/genética , RNA de Cadeia Dupla , Embriófitas/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
13.
Plant Physiol ; 191(2): 894-903, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36437740

RESUMO

Plant microRNAs (miRNAs) are short, noncoding RNA molecules that restrict gene expression via posttranscriptional regulation and function in several essential pathways, including development, growth, and stress responses. Accurately identifying miRNAs in populations of small RNA sequencing libraries is a computationally intensive process that has resulted in the misidentification of inaccurately annotated miRNA sequences. In recent years, criteria for miRNA annotation have been refined with the aim to reduce these misannotations. Here, we describe miRador, a miRNA identification tool that utilizes the most up-to-date, community-established criteria for accurate identification of miRNAs in plants. We combined target prediction and Parallel Analysis of RNA Ends (PARE) data to assess the precision of the miRNAs identified by miRador. We compared miRador to other commonly used miRNA prediction tools and found that miRador is at least as precise as other prediction tools while being substantially faster than other tools. miRador should be broadly useful for the plant community to identify and annotate miRNAs in plant genomes.


Assuntos
MicroRNAs , MicroRNAs/genética , RNA de Plantas/genética , Plantas/genética , Análise de Sequência de RNA/métodos , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala
15.
Plant Biotechnol J ; 21(12): 2585-2596, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596734

RESUMO

Hybrid breeding for increased vigour has been used for over a century to boost agricultural outputs without requiring higher inputs. While this approach has led to some of the most substantial gains in crop productivity, breeding barriers have fundamentally limited soybean (Glycine max) from reaping the benefits of hybrid vigour. Soybean flowers self-pollinate prior to opening and thus are not readily amenable to outcrossing. In this study, we demonstrate that the barnase/barstar male sterility/rescue system can be used in soybean to produce hybrid seeds. By expressing the cytotoxic ribonuclease, barnase, under a tapetum-specific promoter in soybean anthers, we are able to completely block pollen maturation, creating male sterile plants. We show that fertility can be rescued in the F1 generation of these barnase-expressing lines when they are crossed with pollen from plants that express the barnase inhibitor, barstar. Importantly, we found that the successful rescue of male fertility is dependent on the relative dosage of barnase and barstar. When barnase and barstar were expressed under the same tapetum-specific promoter, the F1 offspring remained male sterile. When we expressed barstar under a relatively stronger promoter than barnase, we were able to achieve a successful rescue of male fertility in the F1 generation. This work demonstrates the successful implementation of a biotechnology approach to produce fertile hybrid offspring in soybean.


Assuntos
Glycine max , Infertilidade Masculina , Masculino , Humanos , Plantas Geneticamente Modificadas/genética , Glycine max/genética , Melhoramento Vegetal , Proteínas de Bactérias/genética , Ribonucleases/genética
16.
Plant Physiol ; 188(2): 703-712, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34726737

RESUMO

Plant cells communicate information for the regulation of development and responses to external stresses. A key form of this communication is transcriptional regulation, accomplished via complex gene networks operating both locally and systemically. To fully understand how genes are regulated across plant tissues and organs, high resolution, multi-dimensional spatial transcriptional data must be acquired and placed within a cellular and organismal context. Spatial transcriptomics (ST) typically provides a two-dimensional spatial analysis of gene expression of tissue sections that can be stacked to render three-dimensional data. For example, X-ray and light-sheet microscopy provide sub-micron scale volumetric imaging of cellular morphology of tissues, organs, or potentially entire organisms. Linking these technologies could substantially advance transcriptomics in plant biology and other fields. Here, we review advances in ST and 3D microscopy approaches and describe how these technologies could be combined to provide high resolution, spatially organized plant tissue transcript mapping.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Fenômenos Fisiológicos Vegetais/genética , Plantas/genética , Transdução de Sinais/genética , Análise Espacial , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise de Célula Única
17.
Plant Physiol ; 189(2): 644-665, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642548

RESUMO

The Solanaceae or "nightshade" family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family's small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities.


Assuntos
MicroRNAs , RNA Interferente Pequeno , Solanaceae , Metilação de DNA , RNA Polimerases Dirigidas por DNA/genética , Inativação Gênica , MicroRNAs/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Solanaceae/genética
18.
Plant Cell ; 32(10): 3059-3080, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32817252

RESUMO

Phased secondary small interfering RNAs (phasiRNAs) constitute a major category of small RNAs in plants, but most of their functions are still poorly defined. Some phasiRNAs, known as trans-acting siRNAs, are known to target complementary mRNAs for degradation and to function in development. However, the targets or biological roles of other phasiRNAs remain speculative. New insights into phasiRNA biogenesis, their conservation, and their variation across the flowering plants continue to emerge due to the increased availability of plant genomic sequences, deeper and more sophisticated sequencing approaches, and improvements in computational biology and biochemical/molecular/genetic analyses. In this review, we survey recent progress in phasiRNA biology, with a particular focus on two classes associated with male reproduction: 21-nucleotide (accumulate early in anther ontogeny) and 24-nucloetide (produced in somatic cells during meiosis) phasiRNAs. We describe phasiRNA biogenesis, function, and evolution and define the unanswered questions that represent topics for future research.


Assuntos
Fenômenos Fisiológicos Vegetais/genética , RNA de Plantas/fisiologia , RNA Interferente Pequeno/genética , Estresse Fisiológico/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Desenvolvimento Vegetal/genética , RNA Longo não Codificante/genética
19.
Plant Cell ; 32(6): 1790-1796, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220850

RESUMO

The origin and early evolution of sex chromosomes have been hypothesized to involve the linkage of factors with antagonistic effects on male and female function. Garden asparagus (Asparagus officinalis) is an ideal species to investigate this hypothesis, as the X and Y chromosomes are cytologically homomorphic and evolved from an ancestral autosome pair in association with a shift from hermaphroditism to dioecy. Mutagenesis screens paired with single-molecule fluorescence in situ hybridization directly implicate Y-specific genes that respectively suppress female (pistil) development and are necessary for male (anther) development. Comparison of contiguous X and Y chromosome assemblies shows that hemizygosity underlies the loss of recombination between the genes suppressing female organogenesis (SUPPRESSOR OF FEMALE FUNCTION) and promoting male function (TAPETAL DEVELOPMENT AND FUNCTION1 [aspTDF1]). We also experimentally demonstrate the function of aspTDF1. These findings provide direct evidence that sex chromosomes can function through linkage of two sex determination genes.


Assuntos
Asparagus/genética , Cromossomos de Plantas/genética , Proteínas de Plantas/metabolismo , Hemizigoto , Mutagênese , Proteínas de Plantas/genética
20.
Plant Cell ; 32(12): 3662-3673, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077493

RESUMO

In plants, 22-nucleotide small RNAs trigger the production of secondary small interfering RNAs (siRNAs) and enhance silencing. DICER-LIKE2 (DCL2)-dependent 22-nucleotide siRNAs are rare in Arabidopsis (Arabidopsis thaliana) and are thought to function mainly during viral infection; by contrast, these siRNAs are abundant in many crops such as soybean (Glycine max) and maize (Zea mays). Here, we studied soybean 22-nucleotide siRNAs by applying CRISPR-Cas9 to simultaneously knock out the two copies of soybean DCL2, GmDCL2a and GmDCL2b, in the Tianlong1 cultivar. Small RNA sequencing revealed that most 22-nucleotide siRNAs are derived from long inverted repeats (LIRs) and disappeared in the Gmdcl2a/2b double mutant. De novo assembly of a Tianlong1 reference genome and transcriptome profiling identified an intronic LIR formed by the chalcone synthase (CHS) genes CHS1 and CHS3 This LIR is the source of primary 22-nucleotide siRNAs that target other CHS genes and trigger the production of secondary 21-nucleotide siRNAs. Disruption of this process in Gmdcl2a/2b mutants substantially increased CHS mRNA levels in the seed coat, thus changing the coat color from yellow to brown. Our results demonstrated that endogenous LIR-derived transcripts in soybean are predominantly processed by GmDCL2 into 22-nucleotide siRNAs and uncovered a role for DCL2 in regulating natural traits.


Assuntos
Glycine max/genética , Sequências Repetidas Invertidas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Mutação , Pigmentação , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa