Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(49): 31249-31258, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229550

RESUMO

For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the environmental effects on timing (cogradient variation) or attenuate the effects (countergradient variation). To resolve spatial and seasonal variation in species' response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms tend to accentuate responses in spring (cogradient variation) and attenuate them in autumn (countergradient variation). As a result, among-population variation in the timing of events is greater in spring and less in autumn than if all populations followed the same reaction norm regardless of location. Despite such signs of local adaptation, overall phenotypic plasticity was not sufficient for phenological events to keep exact pace with their cues-the earlier the year, the more did the timing of the phenological event lag behind the timing of the cue. Overall, these patterns suggest that differences in the spatial versus temporal reaction norms will affect species' response to climate change in opposite ways in spring and autumn.


Assuntos
Adaptação Fisiológica/fisiologia , Mudança Climática , Monitoramento Ambiental , População , Animais , Ecossistema , Estações do Ano , Temperatura , U.R.S.S.
3.
Sci Data ; 7(1): 47, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047153

RESUMO

We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.


Assuntos
Biota , Mudança Climática , Bases de Dados Factuais , Quirguistão , República de Belarus , Federação Russa , Estações do Ano , Ucrânia , Uzbequistão
4.
Am Nat ; 171(5): 610-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18419523

RESUMO

Functional connectivity is a fundamental concept in conservation biology because it sets the level of migration and gene flow among local populations. However, functional connectivity is difficult to measure, largely because it is hard to acquire and analyze movement data from heterogeneous landscapes. Here we apply a Bayesian state-space framework to parameterize a diffusion-based movement model using capture-recapture data on the endangered clouded apollo butterfly. We test whether the model is able to disentangle the inherent movement behavior of the species from landscape structure and sampling artifacts, which is a necessity if the model is to be used to examine how movements depend on landscape structure. We show that this is the case by demonstrating that the model, parameterized with data from a reference landscape, correctly predicts movements in a structurally different landscape. In particular, the model helps to explain why a movement corridor that was constructed as a management measure failed to increase movement among local populations. We illustrate how the parameterized model can be used to derive biologically relevant measures of functional connectivity, thus linking movement data with models of spatial population dynamics.


Assuntos
Borboletas/fisiologia , Conservação dos Recursos Naturais/métodos , Demografia , Ecossistema , Modelos Teóricos , Atividade Motora/fisiologia , Algoritmos , Animais , Teorema de Bayes , Finlândia , Dinâmica Populacional
5.
Ecology ; 89(2): 542-54, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18409443

RESUMO

Spatially referenced mark-recapture data are becoming increasingly available, but the analysis of such data has remained difficult for a variety of reasons. One of the fundamental problems is that it is difficult to disentangle inherent movement behavior from sampling artifacts. For example, in a typical study design, short distances are sampled more frequently than long distances. Here we present a modeling-based alternative that combines a diffusion-based process model with an observation model to infer the inherent movement behavior of the species from the data. The movement model is based on classifying the landscape into a number of habitat types, and assuming habitat-specific diffusion and mortality parameters, and habitat selection at edges between the habitat types. As the problem is computationally highly intensive, we provide software that implements adaptive Bayesian methods for effective sampling of the posterior distribution. We illustrate the modeling framework by analyzing individual mark-recapture data on the Glanville fritillary butterfly (Melitaea cinxia), and by comparing our results with earlier ones derived from the same data using a purely statistical approach. We use simulated data to perform an analysis of statistical power, examining how accuracy in parameter estimates depends on the amount of data and on the study design. Obtaining precise estimates for movement rates and habitat preferences turns out to be especially challenging, as these parameters can be highly correlated in the posterior density. We show that the parameter estimates can be considerably improved by alternative study designs, such as releasing some of the individuals into the unsuitable matrix, or spending part of the recapture effort in the matrix.


Assuntos
Migração Animal/fisiologia , Teorema de Bayes , Borboletas/fisiologia , Ecossistema , Animais , Demografia , Feminino , Masculino , Modelos Biológicos , Modelos Estatísticos , Densidade Demográfica , Dinâmica Populacional
7.
Ecol Evol ; 3(11): 3713-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24198935

RESUMO

Long-term observational studies conducted at large (regional) spatial scales contribute to better understanding of landscape effects on population and evolutionary dynamics, including the conditions that affect long-term viability of species, but large-scale studies are expensive and logistically challenging to keep running for a long time. Here, we describe the long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia) that has been conducted since 1991 in a large network of 4000 habitat patches (dry meadows) within a study area of 50 by 70 km in the Åland Islands in Finland. We explain how the landscape structure has been described, including definition, delimitation, and mapping of the habitat patches; methods of field survey, including the logistics, cost, and reliability of the survey; and data management using the EarthCape biodiversity platform. We describe the long-term metapopulation dynamics of the Glanville fritillary based on the survey. There has been no long-term change in the overall size of the metapopulation, but the level of spatial synchrony and hence the amplitude of fluctuations in year-to-year metapopulation dynamics have increased over the years, possibly due to increasing frequency of exceptional weather conditions. We discuss the added value of large-scale and long-term population studies, but also emphasize the need to integrate more targeted experimental studies in the context of long-term observational studies. For instance, in the case of the Glanville fritillary project, the long-term study has produced an opportunity to sample individuals for experiments from local populations with a known demographic history. These studies have demonstrated striking differences in dispersal rate and other life-history traits of individuals from newly established local populations (the offspring of colonizers) versus individuals from old, established local populations. The long-term observational study has stimulated the development of metapopulation models and provided an opportunity to test model predictions. This combination of empirical studies and modeling has facilitated the study of key phenomena in spatial dynamics, such as extinction threshold and extinction debt.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa