Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
N Engl J Med ; 386(8): 735-743, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35196427

RESUMO

BACKGROUND: Covalent (irreversible) Bruton's tyrosine kinase (BTK) inhibitors have transformed the treatment of multiple B-cell cancers, especially chronic lymphocytic leukemia (CLL). However, resistance can arise through multiple mechanisms, including acquired mutations in BTK at residue C481, the binding site of covalent BTK inhibitors. Noncovalent (reversible) BTK inhibitors overcome this mechanism and other sources of resistance, but the mechanisms of resistance to these therapies are currently not well understood. METHODS: We performed genomic analyses of pretreatment specimens as well as specimens obtained at the time of disease progression from patients with CLL who had been treated with the noncovalent BTK inhibitor pirtobrutinib. Structural modeling, BTK-binding assays, and cell-based assays were conducted to study mutations that confer resistance to noncovalent BTK inhibitors. RESULTS: Among 55 treated patients, we identified 9 patients with relapsed or refractory CLL and acquired mechanisms of genetic resistance to pirtobrutinib. We found mutations (V416L, A428D, M437R, T474I, and L528W) that were clustered in the kinase domain of BTK and that conferred resistance to both noncovalent BTK inhibitors and certain covalent BTK inhibitors. Mutations in BTK or phospholipase C gamma 2 (PLCγ2), a signaling molecule and downstream substrate of BTK, were found in all 9 patients. Transcriptional activation reflecting B-cell-receptor signaling persisted despite continued therapy with noncovalent BTK inhibitors. CONCLUSIONS: Resistance to noncovalent BTK inhibitors arose through on-target BTK mutations and downstream PLCγ2 mutations that allowed escape from BTK inhibition. A proportion of these mutations also conferred resistance across clinically approved covalent BTK inhibitors. These data suggested new mechanisms of genomic escape from established covalent and novel noncovalent BTK inhibitors. (Funded by the American Society of Hematology and others.).


Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Mutação , Fosfolipase C gama , Inibidores de Proteínas Quinases , Humanos , Pessoa de Meia-Idade , Adenina/análogos & derivados , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/ultraestrutura , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Fosfolipase C gama/genética , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Antígenos de Linfócitos B/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
2.
Blood ; 136(13): 1477-1486, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32640014

RESUMO

Large-scale sequencing studies of hematologic malignancies have revealed notable epistasis among high-frequency mutations. One of the most striking examples of epistasis occurs for mutations in RNA splicing factors. These lesions are among the most common alterations in myeloid neoplasms and generally occur in a mutually exclusive manner, a finding attributed to their synthetic lethal interactions and/or convergent effects. Curiously, however, patients with multiple-concomitant splicing factor mutations have been observed, challenging our understanding of one of the most common examples of epistasis in hematologic malignancies. In this study, we performed bulk and single-cell analyses of patients with myeloid malignancy who were harboring ≥2 splicing factor mutations, to understand the frequency and basis for the coexistence of these mutations. Although mutations in splicing factors were strongly mutually exclusive across 4231 patients (q < .001), 0.85% harbored 2 concomitant bona fide splicing factor mutations, ∼50% of which were present in the same individual cells. However, the distribution of mutations in patients with double mutations deviated from that in those with single mutations, with selection against the most common alleles, SF3B1K700E and SRSF2P95H/L/R, and selection for less common alleles, such as SF3B1 non-K700E mutations, rare amino acid substitutions at SRSF2P95, and combined U2AF1S34/Q157 mutations. SF3B1 and SRSF2 alleles enriched in those with double-mutations had reduced effects on RNA splicing and/or binding compared with the most common alleles. Moreover, dual U2AF1 mutations occurred in cis with preservation of the wild-type allele. These data highlight allele-specific differences as critical in regulating the molecular effects of splicing factor mutations as well as their cooccurrences/exclusivities with one another.


Assuntos
Epistasia Genética , Neoplasias Hematológicas/genética , Mutação , Fatores de Processamento de RNA/genética , Splicing de RNA , Alelos , Análise Mutacional de DNA , Genômica , Humanos , Leucemia Mieloide/genética , Análise de Célula Única
4.
Am J Hematol ; 93(11): 1358-1367, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30117174

RESUMO

The B/T subtype of mixed phenotype acute leukemia (B/T MPAL) is defined by co-expression of antigens of both B- and T-cell lineages on leukemic blasts. Although it has been suggested that multilineage antigen expression portends poor response to chemotherapy, the clinical characteristics and driver mutations that underlie the pathogenesis of this rare subtype of acute leukemia are scarcely known. We identified nine cases of B/T MPAL from multiple institutions and correlated clinical and immunophenotypic findings with next-generation sequencing data. We report that B/T MPAL commonly presents with lymphadenopathy in adolescence and young adulthood. While the tumors have diverse cytogenetic and genomic perturbations, recurrent acquired aberrations include mutations in the putative transcriptional regulator PHF6 and the JAK-STAT and Ras signaling pathways. Alterations were also identified in genes encoding hematopoietic transcription factors, cell cycle regulators/tumor suppressors, and chromatin modifying enzymes. The genomic landscape of B/T MPAL strongly resembles that of T-ALL subgroups associated with early developmental arrest, while genetic alterations that are common in B-ALL were rarely seen. Two-thirds of the patients responded to ALL-based chemotherapy with or without stem cell transplantation. Our observations lay the groundwork for further study of the unique biology and clinical trajectory of B/T MPAL.


Assuntos
Leucemia Aguda Bifenotípica , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Adulto , Tratamento Farmacológico/métodos , Feminino , Genômica , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/terapia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Cancer Immunol Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959337

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has resulted in remarkable clinical success in the treatment of B-cell malignancies. However, its clinical efficacy in solid tumors is limited, primarily by target antigen heterogeneity. To overcome antigen heterogeneity, we developed CAR T cells that overexpress LIGHT, a ligand of both LTßR on cancer cells and HVEM on immune cells. LIGHT-expressing CAR T cells displayed both antigen-directed cytotoxicity mediated by the CAR and antigen-independent killing mediated through the interaction of LIGHT with LTßR on cancer cells. Moreover, CAR T cells expressing LIGHT had immunostimulatory properties that improved the cells' proliferation and cytolytic profile. These data indicate that LIGHT-expressing CAR T cells may provide a way to eliminate antigen-negative tumor cells to prevent antigen-negative disease relapse.

6.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301010

RESUMO

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Proteólise , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Fator de Transcrição Ikaros/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Proteólise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
7.
Nat Cancer ; 4(12): 1675-1692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872381

RESUMO

Despite recent advances in the treatment of acute myeloid leukemia (AML), there has been limited success in targeting surface antigens in AML, in part due to shared expression across malignant and normal cells. Here, high-density immunophenotyping of AML coupled with proteogenomics identified unique expression of a variety of antigens, including the RNA helicase U5 snRNP200, on the surface of AML cells but not on normal hematopoietic precursors and skewed Fc receptor distribution in the AML immune microenvironment. Cell membrane localization of U5 snRNP200 was linked to surface expression of the Fcγ receptor IIIA (FcγIIIA, also known as CD32A) and correlated with expression of interferon-regulated immune response genes. Anti-U5 snRNP200 antibodies engaging activating Fcγ receptors were efficacious across immunocompetent AML models and were augmented by combination with azacitidine. These data provide a roadmap of AML-associated antigens with Fc receptor distribution in AML and highlight the potential for targeting the AML cell surface using Fc-optimized therapeutics.


Assuntos
Leucemia Mieloide Aguda , Receptores de IgG , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Superfície , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Ribonucleoproteínas Nucleares Pequenas , Microambiente Tumoral
8.
Lancet Haematol ; 7(8): e566-e574, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32735836

RESUMO

BACKGROUND: The median overall survival of patients with high-risk myelodysplastic syndromes refractory to hypomethylating agents is less than 6 months. Currently, no standard therapy for such patients exists. Preclinical studies have shown that inhibition of the nuclear export protein exportin 1 (XPO1) causes nuclear accumulation of p53 and disruption of NF-κB signalling, both relevant targets for myelodysplastic syndromes. We therefore aimed to assess the safety and activity of selinexor in patients with myelodysplastic syndromes or oligoblastic acute myeloid leukaemia refractory to hypomethylating agents. METHODS: We did a single-centre, single-arm, phase 2 trial at the Memorial Sloan Kettering Cancer Center in the USA. We included patients 18 years or older with high-risk myelodysplastic syndromes or oligoblastic acute myeloid leukaemia (defined as blasts ≥20% but ≤30%) refractory to hypomethylating agents and with an Eastern Cooperative Oncology Group performance status score of 0-2. Eligible patients received 3-week long cycles of oral selinexor (60 mg twice per week for 2 weeks, followed by 1 week off). The primary outcome was overall response rate. Complete remission, partial remission, marrow complete remission, or haematological improvement were included in the response categories for assessing the primary endpoint. The activity analysis included all patients who completed at least one full-scheduled post-treatment disease assessment. All patients who were given selinexor were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT02228525. FINDINGS: Between Sept 23, 2014, and March 13, 2018, 25 patients were enrolled on this study. The median follow-up was 8·5 months (IQR 3·1-12·2). Two patients did not meet the full eligibility criteria after baseline assessment; therefore, 23 patients were evaluable for activity assessment. In the 23 evaluable patients, overall response rate was 26% (95% CI 10-48) in six patients with marrow complete remission, with an additional 12 patients (52%, 95% CI 31-73) achieving stable disease. The most common grade 3 or 4 adverse events were thrombocytopenia (eight [32%] of 25 patients) and hyponatraemia (five [20%]). There were no drug-related serious adverse events and no treatment-related deaths. INTERPRETATION: Selinexor showed responses in patients with myelodysplastic syndromes or oligoblastic acute myeloid leukaemia refractory to hypomethylating agents. Adverse events were manageable with supportive care implementation. Further studies are needed to compare selinexor with supportive care alone, and to identify patient subgroups that might benefit the most from selinexor treatment. FUNDING: Karyopharm Therapeutics.


Assuntos
Azacitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hidrazinas/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Triazóis/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/farmacologia , Feminino , Seguimentos , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Síndromes Mielodisplásicas/patologia , Segurança do Paciente , Prognóstico , Taxa de Sobrevida
9.
J Exp Med ; 216(5): 1050-1060, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30914438

RESUMO

Studies of allelic variation underlying genetic blood disorders have provided important insights into human hematopoiesis. Most often, the identified pathogenic mutations result in loss-of-function or missense changes. However, assessing the pathogenicity of noncoding variants can be challenging. Here, we characterize two unrelated patients with a distinct presentation of dyserythropoietic anemia and other impairments in hematopoiesis associated with an intronic mutation in GATA1 that is 24 nucleotides upstream of the canonical splice acceptor site. Functional studies demonstrate that this single-nucleotide alteration leads to reduced canonical splicing and increased use of an alternative splice acceptor site that causes a partial intron retention event. The resultant altered GATA1 contains a five-amino acid insertion at the C-terminus of the C-terminal zinc finger and has no observable activity. Collectively, our results demonstrate how altered splicing of GATA1, which reduces levels of the normal form of this master transcription factor, can result in distinct changes in human hematopoiesis.


Assuntos
Processamento Alternativo/genética , Anemia Diseritropoética Congênita/genética , Fator de Transcrição GATA1/genética , Hematopoese/genética , Íntrons/genética , Mutação de Sentido Incorreto , Síndromes Mielodisplásicas/genética , Adulto , Criança , Éxons , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Síndromes Mielodisplásicas/patologia , Sítios de Splice de RNA/genética , Transcrição Gênica/genética , Transfecção
10.
Elife ; 72018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30468428

RESUMO

DNA methylation plays an essential role in mammalian genomes and expression of the responsible enzymes is tightly controlled. Deregulation of the de novo DNA methyltransferase DNMT3B is frequently observed across cancer types, yet little is known about its ectopic genomic targets. Here, we used an inducible transgenic mouse model to delineate rules for abnormal DNMT3B targeting, as well as the constraints of its activity across different cell types. Our results explain the preferential susceptibility of certain CpG islands to aberrant methylation and point to transcriptional state and the associated chromatin landscape as the strongest predictors. Although DNA methylation and H3K27me3 are usually non-overlapping at CpG islands, H3K27me3 can transiently co-occur with DNMT3B-induced DNA methylation. Our genome-wide data combined with ultra-deep locus-specific bisulfite sequencing suggest a distributive activity of ectopically expressed Dnmt3b that leads to discordant CpG island hypermethylation and provides new insights for interpreting the cancer methylome.


Assuntos
Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/biossíntese , Metilação de DNA , Expressão Gênica , Proteínas Recombinantes/biossíntese , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Humanos , Camundongos Transgênicos , Neoplasias/patologia , Proteínas Recombinantes/genética , DNA Metiltransferase 3B
12.
Wei Sheng Yan Jiu ; 35(6): 798-801, 2006 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-17290771

RESUMO

OBJECTIVE: In order to provide a rapid and selectivity method for the determination of clenbuterol(CBL), an indirect competitive time-resolved fluoroimmunoassay (TRFIA) was developed. METHODS: Anti-CBL antibody, was raised by immunization against CBL-BSA in rabbits. CBL-OVA was coated by physical adsorption onto the microtitre plate, CBL or sample with CBL as a competitor. Both them were incubated with limited anti- CBL antibody. and a goat antirabbit IgG-Eu3+ conjugate was used as a tracer. RESULTS: The sensitivity of CBL-TRFIA was 0.01microg/L, and the recovery rate was 99.7%. RSD of CBL-TRFIA was 3.9% . The sensitivity of CBL-TRFIA provided a linear response from 0.01 - 25microg/L, with ED50 of (1.47+/-0.11) microg/L or ED80 of (0.07+/-0.01)microg/L and ED, of (23.6+/- 0.56) microg/L. The cross reactivity of the CBL-TRFIA with salbutamol, epinephrine hydrochloride and epinephrine bitartrate was negligible, while that with isoprenaline hydrochloride was 0.01% . Both CBL-TRFIA and CBL-ELISA test were applied for the quantitative measurement of CBL in the same urine, and the coefficient of correlation was 0.932. CONCLUSION: The CBL-TRFIA could be applied to detect the CBL in urine and it is useful to screening easily for CBL contamination in meat or foods.


Assuntos
Clembuterol/urina , Fluorimunoensaio/métodos , Animais , Masculino , Coelhos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa