Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med Phys ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321382

RESUMO

BACKGROUND: In recent years, the number of hip replacement patients receiving radiation therapy has steadily increased. In parallel, strategies have been developed to reduce metal artifacts in computed tomography (CT) images and improve the accuracy of dose calculation algorithms. However, in certain situations, knowledge of the type of prosthesis material is required to accurately determine the dose distribution. PURPOSE: This study aims to identify physical materials in hip prostheses to correctly assign them in the treatment planning system and improve dose calculation accuracy. METHODS: We first verified the validity of the extended CT mass density calibration curve measured on titanium (Ti) and stainless steel (SS) metal inserts of two different diameters. Then using dedicated reference objects of various circular diameters, we developed a method based on interpolation functions to differentiate between Ti and SS material groups. Forty data sets from 18 patients were used to validate our method on two different reconstruction kernels: a standard Br44f and the electron DirectDensity (Sd40f) kernels from Siemens. RESULTS: Hounsfield units (HU) of Ti and SS inserts were found to vary widely depending on insert diameter, CT spectrum, and reconstruction kernels due to cupping artifacts. The largest HU difference (-79%) was obtained for SS at 70 kV with Br44f when the diameter increased from 8 to 30 mm. Therefore, under these conditions, the extended CT-density calibration curve is not recommended for heavy metal density determination. Using our interpolation-based method, we achieved excellent detection (100%) and material differentiation (100%) results for stems in both reconstruction kernels. At CT energies between 110 and 140 kV, the detection and material differentiation rates were 93.3% and 92.9% for the heads and 93.3% and 92.9% for the acetabular cups, respectively, with the Br44f. Similarly, the use of Sd40f resulted in detection and differentiation rates of 94.7% and 100% for the heads and 100% and 95.0% for the acetabular cups, respectively. CONCLUSION: This method makes it possible to differentiate between hip prosthesis materials and correctly assign them to the Ti or SS group without prior knowledge of the prosthesis type, regardless of the reconstruction kernels. In combination with the Acuros XB (Varian) or Monte Carlo dose algorithms, excellent dosimetric accuracy can be achieved even in the vicinity of hip prostheses. By performing basic measurements, the method can be adapted to other CT units and reconstruction kernels, replacing the use of an extended CT-density calibration curve.

2.
Pediatr Radiol ; 43(5): 558-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23224105

RESUMO

BACKGROUND: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEO(TM) is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. OBJECTIVE: To evaluate the potential of VEO(TM) on diagnostic image quality and dose reduction in pediatric chest CT examinations. MATERIALS AND METHODS: Twenty children (mean 11.4 years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100 kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14 mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1 = excellent, 2 = clear, 3 = diminished, 4 = non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. RESULTS: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. CONCLUSIONS: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projection.


Assuntos
Algoritmos , Fibrose Cística/diagnóstico por imagem , Modelos Biológicos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Criança , Simulação por Computador , Feminino , Humanos , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Z Med Phys ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150728

RESUMO

PURPOSE: To determine 10 MV IMRT and VMAT based protocols with a daily bolus targeting a skin dose of 45 Gy in order to replace the 6 MV tangential fields with a 5 mm thick bolus on alternate days method for post-mastectomy radiotherapy. METHOD: We measured the mean surface dose along the chest wall PTV as a function of different bolus thicknesses for sliding window IMRT and VMAT plans. We analyzed surface dose profiles and dose homogeneities and compared them to our standard 6 MV strategy. All measurements were performed on a thorax phantom with Gafchromic films while dosimetric plans were computed using the Acuros XB algorithm (Varian). RESULTS: We obtained the best compromise between measured surface dose (mean dose and homogeneity) and skin toxicity threshold obtained from the literature using a daily 3 mm thick bolus. Mean surface doses were 91.4 ±â€¯2.8% [85.7% - 95.4%] and 92.2 ±â€¯2.3% [85.6% - 95.2%] of the prescribed dose with IMRT and VMAT techniques, respectively. Our standard 6 MV alternate days 5 mm thick bolus leads to 89.0 ±â€¯3.7% [83.6% - 95.5%]. Mean dose differences between measured and TPS results were < 3.2% for depths as low as 2 mm depth. CONCLUSION: 10 MV IMRT-based protocols with a daily 3 mm thick bolus produce a surface dose comparable to the standard 6 MV 5 mm thick bolus on alternate days method but with an improved surface dose homogeneity. This allows for a better control of skin toxicity and target volume coverage.

4.
Pediatr Radiol ; 41(9): 1154-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21717165

RESUMO

BACKGROUND: Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. OBJECTIVE: To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. MATERIALS AND METHODS: Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. RESULTS: The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. CONCLUSION: Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Cardiopatias/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X , Criança , Pré-Escolar , Feminino , Cardiopatias/congênito , Humanos , Lactente , Recém-Nascido , Masculino , Imagens de Fantasmas/normas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/normas
5.
Phys Med ; 29(1): 99-110, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22217444

RESUMO

This paper characterizes and evaluates the potential of three commercial CT iterative reconstruction methods (ASIR™, VEO™ and iDose4(™)) for dose reduction and image quality improvement. We measured CT number accuracy, standard deviation (SD), noise power spectrum (NPS) and modulation transfer function (MTF) metrics on Catphan phantom images while five human observers performed four-alternative forced-choice (4AFC) experiments to assess the detectability of low- and high-contrast objects embedded in two pediatric phantoms. Results show that 40% and 100% ASIR as well as iDose4 levels 3 and 6 do not affect CT number and strongly decrease image noise with relative SD constant in a large range of dose. However, while ASIR produces a shift of the NPS curve apex, less change is observed with iDose4 with respect to FBP methods. With second-generation iterative reconstruction VEO, physical metrics are even further improved: SD decreased to 70.4% at 0.5 mGy and spatial resolution improved to 37% (MTF(50%)). 4AFC experiments show that few improvements in detection task performance are obtained with ASIR and iDose4, whereas VEO makes excellent detections possible even at an ultra-low-dose (0.3 mGy), leading to a potential dose reduction of a factor 3 to 7 (67%-86%). In spite of its longer reconstruction time and the fact that clinical studies are still required to complete these results, VEO clearly confirms the tremendous potential of iterative reconstructions for dose reduction in CT and appears to be an important tool for patient follow-up, especially for pediatric patients where cumulative lifetime dose still remains high.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Razão Sinal-Ruído
6.
Phys Med ; 29(6): 684-94, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22858431

RESUMO

The goal of this study was to investigate the impact of computing parameters and the location of volumes of interest (VOI) on the calculation of 3D noise power spectrum (NPS) in order to determine an optimal set of computing parameters and propose a robust method for evaluating the noise properties of imaging systems. Noise stationarity in noise volumes acquired with a water phantom on a 128-MDCT and a 320-MDCT scanner were analyzed in the spatial domain in order to define locally stationary VOIs. The influence of the computing parameters in the 3D NPS measurement: the sampling distances bx,y,z and the VOI lengths Lx,y,z, the number of VOIs NVOI and the structured noise were investigated to minimize measurement errors. The effect of the VOI locations on the NPS was also investigated. Results showed that the noise (standard deviation) varies more in the r-direction (phantom radius) than z-direction plane. A 25 × 25 × 40 mm(3) VOI associated with DFOV = 200 mm (Lx,y,z = 64, bx,y = 0.391 mm with 512 × 512 matrix) and a first-order detrending method to reduce structured noise led to an accurate NPS estimation. NPS estimated from off centered small VOIs had a directional dependency contrary to NPS obtained from large VOIs located in the center of the volume or from small VOIs located on a concentric circle. This showed that the VOI size and location play a major role in the determination of NPS when images are not stationary. This study emphasizes the need for consistent measurement methods to assess and compare image quality in CT.


Assuntos
Imageamento Tridimensional/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa