Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 173943, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880129

RESUMO

In this study, the effects of Ball milling (BM) pretreatment (0-240 min) on the microstructure, physicochemical properties and subsequent methanogenesis performance of corn straw (CS) were explored, and the feasibility analysis was carried out. The results showed that BM pretreatment destroyed the dense structure of the CS, and the particle size was significantly reduced (D50: 13.85 µm), transforming it into a cell-scale granular form. The number of mesopores increased, the pore volume (PV) (0.032 cm3/g) and specific surface area (SSA) (4.738 m2/g) considerably increased, and the water-absorbent property was improved. The crystalline order of cellulose was disrupted and the crystallinity (CrI) (8.61 %) and crystal size (CrS) (3.37) were remarkably reduced. The cross-links between lignocelluloses were broken, and the relative content and functional groups did not alter obviously. The bulk density (BD), repose angle (RA) and slip angle (SA) dramatically increased. As a result, CS was more readily accessible, attached and utilized by microorganisms and enzymes, causing the hydrolysis and acidification of AD to be greatly facilitated. Compared with the untreated group, the cumulative methane production (CMP) increased by 35.83 %-101.97 %, and the lag phase time (λ) was shortened by 33.04 %-71.17 %. The results of redundancy analysis, Pearson analysis and Mantel test showed that BM pretreatment affects the process of AD by changing the physicochemical factors of CS. The normalization analysis showed that particle size (D90) and BD can be used as direct indicators to evaluate the performance of AD and predict the threshold of biodegradation of CS. Energy analysis and energy conversion assessment showed that BM is a green and efficient AD pretreatment strategy. This result provides a theoretical basis for the industrial application of BM pretreatment towards more energy-efficient and sustainable development.


Assuntos
Zea mays , Anaerobiose , Celulose/química , Metano , Lignina , Estudos de Viabilidade
2.
Bioresour Technol ; 372: 128654, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682475

RESUMO

Based on the semi-continuous anaerobic co-digestion (AcoD) reactor, the effects of biochar addition on the internal environmental changes and gas production characteristics were studied under the condition of biogas slurry recirculation. The results showed that the addition of biochar enhanced the degradation and metabolic pathways of acetate and propionate, thereby reducing the concentrations of volatile fatty acids (VFAs), total ammonia and chemical oxygen demand by 55 %, 41 % and 61 %, respectively. The buffer system formed by the combination of NH4+ and VFAs of C2-C5 was also enhanced, thereby improving the stability of the system. The addition of biochar effectively increased the relative abundance of Bacteroidetes, Chloroflexi, Spirochaetota and Synergistota, and enhanced three methanogenic metabolic pathways. This study provides scientific support for the application of biochar to solve the system inhibition in mixed substrate semi-continuous AcoD process and provides technical support for the stable operation of biogas project.


Assuntos
Biocombustíveis , Esterco , Animais , Suínos , Anaerobiose , Zea mays/metabolismo , Reatores Biológicos , Metano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Digestão
3.
Sci Total Environ ; 857(Pt 1): 159282, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36209878

RESUMO

To analyze the state of anaerobic digestion (AD), fast detection models of volatile fatty acids (VFAs) were constructed using near-infrared transmission spectroscopy combined with partial least squares regression to measure concentrations of the acetic acid (AA), propionic acid (PA) and total acid (TA) in biogas slurry. CARS-SA-BPSO algorithm was proposed based on competitive adaptive reweighted sampling (CARS) and simulated annealing binary particle swarm optimization algorithm (SA-BPSO) for selecting feature wavelengths of the AA, PA and TA. Regression models were established with the determination coefficient of prediction (Rp2) of 0.989, root mean squared error of prediction (RMSEP) of 0.111 and residual predictive deviation (RPD) of 9.706 for AA; Rp2 of 0.932, RMSEP of 0.116 and RPD of 3.799 for PA; Rp2 of 0.895, RMSEP of 0.689 and RPD of 3.676 for TA. It is sufficient to meet the fast detection needs of the AA and PA concentrations in biogas slurry, and basically meet the measuring demand of the TA concentration. CARS-SA-BPSO effectively improves the performance of the calibration model using sensitive wavelength selections, which provides theoretical support for establishing the spectral quantitative regression model to meet the requirements of practical application.


Assuntos
Biocombustíveis , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados , Calibragem , Algoritmos , Ácidos Graxos Voláteis
4.
Environ Sci Pollut Res Int ; 29(46): 69967-69979, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35579833

RESUMO

In this research, an imidazolium-based polymeric ionic liquid (PIL) gel was effectively synthesized in one step via electron beam (EB) radiation technology. The synthesized gel with gel fraction of 78% under 80 kGy was used for the adsorption and separation of Re(VII) and U(VI). The structure of the gel was characterized by FTIR, SEM, BET, and XPS. Furthermore, batch adsorption was experimented to explore its performance of Re(VII) and U(VI) removal. The two adsorption processes all more fitted the Langmuir isotherm model with the maximum adsorption capacities of 892.9 mg/g for Re(VII) and 243.9 mg/g for U(VI). The adsorption reached equilibrium within 1 min for Re(VII), while within 4 min for U(VI), showing its greatly rapid adsorption rate because of its three-dimensional porous network structure. In addition, the separation experiments of Re/U replied that PIL gel could effectively separate Re(VII) from the simulated uranium leaching solution. Regeneration experiments present the good reusability of PIL gel. This work demonstrated the practical application of EB-radiation technology in the synthesis of PIL gel, which is a promising adsorbent for Re(VII) and U(VI) recovery .

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa