RESUMO
Mitochondrial dysfunction is an early event in the pathogenesis of neurologic disorders and aging. Sirtuin 3 (SIRT3) regulates mitochondrial function in response to the cellular environment through the reversible deacetylation of proteins involved in metabolism and reactive oxygen species detoxification. As the primary mitochondrial deacetylase, germline, or peripheral tissue-specific deletion of SIRT3 produces mitochondrial hyperacetylation and the accelerated development of age-related diseases. Given the unique metabolic demands of neurons, the role of SIRT3 in the brain is only beginning to emerge. Using mass spectrometry-based acetylomics, high-resolution respirometry, video-EEG, and cognition testing, we report targeted deletion of SIRT3 from select neurons in the cortex and hippocampus produces altered neuronal excitability and metabolic dysfunction in female mice. Targeted deletion of SIRT3 from neuronal helix-loop-helix 1 (NEX)-expressing neurons resulted in mitochondrial hyperacetylation, female-specific superoxide dismutase-2 (SOD2) modification, increased steady-state superoxide levels, metabolic reprogramming, altered neuronal excitability, and working spatial memory deficits. Inducible neuronal deletion of SIRT3 likewise produced female-specific deficits in spatial working memory. Together, the data demonstrate that deletion of SIRT3 from forebrain neurons selectively predisposes female mice to deficits in mitochondrial and cognitive function.SIGNIFICANCE STATEMENT Mitochondrial SIRT3 is an enzyme shown to regulate energy metabolism and antioxidant function, by direct deacetylation of proteins. In this study, we show that neuronal SIRT3 deficiency renders female mice selectively vulnerable to impairment in redox and metabolic function, spatial memory, and neuronal excitability. The observed sex-specific effects on cognition and neuronal excitability in female SIRT3-deficient mice suggest that mitochondrial dysfunction may be one factor underlying comorbid neuronal diseases, such as Alzheimer's disease and epilepsy. Furthermore, the data suggest that SIRT3 dysfunction may predispose females to age-related metabolic and cognitive impairment.
Assuntos
Sirtuína 3 , Masculino , Camundongos , Feminino , Animais , Sirtuína 3/genética , Neurônios/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/metabolismo , AcetilaçãoRESUMO
Succinylation is a post-translational modification of protein lysine residues with succinyl groups derived from succinyl CoA. Succinylation is considered a significant post-translational modification with the potential to impact protein function which is highly conserved across numerous species. The role of succinylation in the heart, especially in heart failure and myofibril mechanics, remains largely unexplored. Mechanical parameters were measured in myofibrils isolated from failing hearts of ischemic cardiomyopathy patients and non-failing donor controls. We employed mass spectrometry to quantify differential protein expression in myofibrils from failing ischemic cardiomyopathy hearts compared to non-failing hearts. In addition, we combined peptide enrichment by immunoprecipitation with liquid chromatography tandem mass spectrometry to quantitatively analyze succinylated lysine residues in these myofibrils. Several key parameters of sarcomeric mechanical interactions were altered in myofibrils isolated from failing ischemic cardiomyopathy hearts, including lower resting tension and a faster rate of activation. Of the 100 differentially expressed proteins, 46 showed increased expression in ischemic heart failure, while 54 demonstrated decreased expression in ischemic heart failure. Our quantitative succinylome analysis identified a total of 572 unique succinylated lysine sites located on 181 proteins, with 307 significantly changed succinylation events. We found that 297 succinyl-Lys demonstrated decreased succinylation on 104 proteins, while 10 residues demonstrated increased succinylation on 4 proteins. Investigating succinyl CoA generation, enzyme activity assays demonstrated that α-ketoglutarate dehydrogenase and succinate dehydrogenase activities were significantly decreased in ischemic heart failure. An activity assay for succinyl CoA synthetase demonstrated a significant increase in ischemic heart failure. Taken together, our findings support the hypothesis that succinyl CoA production is decreased and succinyl CoA turnover is increased in ischemic heart failure, potentially resulting in an overall decrease in the mitochondrial succinyl CoA pool, which may contribute to decreased myofibril protein succinylation in heart failure.
Assuntos
Cardiomiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas Mitocondriais/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miofibrilas/metabolismo , Ácido Succínico/metabolismo , Acilação , Cardiomiopatias/complicações , Humanos , Lisina/metabolismo , Metilação , Pessoa de Meia-Idade , Isquemia Miocárdica/complicações , Proteômica , Reprodutibilidade dos Testes , Doadores de TecidosRESUMO
Mitochondrial dysfunction is one of many key factors in the etiology of alcoholic liver disease (ALD). Lysine acetylation is known to regulate numerous mitochondrial metabolic pathways, and recent reports demonstrate that alcohol-induced protein acylation negatively impacts these processes. To identify regulatory mechanisms attributed to alcohol-induced protein post-translational modifications, we employed a model of alcohol consumption within the context of wild type (WT), sirtuin 3 knockout (SIRT3 KO), and sirtuin 5 knockout (SIRT5 KO) mice to manipulate hepatic mitochondrial protein acylation. Mitochondrial fractions were examined by label-free quantitative HPLC-MS/MS to reveal competition between lysine acetylation and succinylation. A class of proteins defined as "differential acyl switching proteins" demonstrate select sensitivity to alcohol-induced protein acylation. A number of these proteins reveal saturated lysine-site occupancy, suggesting a significant level of differential stoichiometry in the setting of ethanol consumption. We hypothesize that ethanol downregulates numerous mitochondrial metabolic pathways through differential acyl switching proteins. Data are available via ProteomeXchange with identifier PXD012089.
Assuntos
Acilação/efeitos dos fármacos , Etanol/farmacologia , Mitocôndrias , Proteoma , Animais , Hepatopatias Alcoólicas/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteoma/química , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismoRESUMO
Acetylation of lysine residues occurs in lens proteins. Previous studies have shown an improvement in the chaperone activity of αA-crystallin upon acetylation. Sirtuins are NAD+-dependent enzymes that can deacylate proteins. The roles of sirtuins in regulating the acetylation of lens proteins and their impacts on the function of α-crystallin are not known. Here, we detected sirtuin activity in mouse lenses, and SIRT3 and SIRT5 were present primarily in the mitochondria of cultured primary mouse lens epithelial cells. Western blotting showed higher levels of protein acetylation in the lenses of SIRT3 KO and SIRT5 KO mice than in lenses of WT mice. Mass spectrometry analyses revealed a greater number of acetylated lysine residues in α-crystallin isolated from the SIRT3 and SIRT5 KO lenses than from WT lenses. α-Crystallin isolated from SIRT3 and SIRT5 KO lenses displayed a higher surface hydrophobicity and higher chaperone activity than the protein isolated from WT lenses. Thus, SIRTs regulate the acetylation levels of crystallins in mouse lenses, and acetylation in lenses enhances the chaperone activity of α-crystallin.
Assuntos
Catarata/genética , Regulação da Expressão Gênica , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Sirtuína 3/genética , Sirtuínas/genética , alfa-Cristalinas/genética , Acetilação , Animais , Western Blotting , Catarata/metabolismo , Modelos Animais de Doenças , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/genética , Sirtuína 3/biossíntese , Sirtuínas/biossíntese , alfa-Cristalinas/metabolismoRESUMO
Lysine acetylation (AcK) is a prominent post-translational modification in eye lens crystallins. We have observed that AcK formation is preferred in some lysine residues over others in crystallins. In this study, we have investigated the role of thiols in such AcK formation. Upon incubation with acetyl-CoA (AcCoA), αA-Crystallin, which contains two cysteine residues, showed significantly higher levels of AcK than αB-Crystallin, which lacks cysteine residues. Incubation with thiol-rich γS-Crystallin resulted in higher AcK formation in αB-Crystallin from AcCoA. External free thiol (glutathione and N-acetyl cysteine) increased the AcK content in AcCoA-incubated αB-Crystallin. Reductive alkylation of cysteine residues significantly decreased (p < 0.001) the AcCoA-mediated AcK formation in αA-Crystallin. Introduction of cysteine residues within â¼5 Å of lysine residues (K92C, E99C, and V169C) in αB-Crystallin followed by incubation with AcCoA resulted in a 3.5-, 1.3- and 1.3-fold increase in the AcK levels when compared to wild-type αB-Crystallin, respectively. Together, these results suggested that AcK formation in α-Crystallin is promoted by the proximal cysteine residues and protein-free thiols through an S â N acetyl transfer mechanism.
Assuntos
Lisina , Compostos de Sulfidrila , Lisina/metabolismo , Lisina/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Acetilação , Cristalinas/metabolismo , Cristalinas/química , Cristalino/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Acetilcoenzima A/metabolismo , Acetilcoenzima A/químicaRESUMO
The diagnosis of mitochondrial disorders is complex. Rapid whole genome sequencing is a first line test for critically ill neonates and infants allowing rapid diagnosis and treatment. Standard genomic technology and bioinformatic pipelines still have an incomplete diagnostic yield requiring complementary approaches. There are currently limited options for rapid additional tests to continue a diagnostic work-up after a negative rapid whole-genome sequencing result, reflecting a gap in clinical practice. Multi-modal integrative diagnostic approaches derived from systems biology including proteomics and transcriptomics show promise in suspected mitochondrial disorders. In this article, we report the case of a neonate who presented with severe lactic acidosis on the second day of life, for whom an initial report of ultra-rapid genome sequencing was negative. The patient was started on dichloroacetate as an emergency investigational new drug (eIND), with a sharp decline in lactic acid levels and clinical stabilization. A proteomics-based approach identified a complete absence of PDHX protein, leading to a re-review of the genome data for the PDHX gene in which a homozygous deep intronic pathogenic variant was identified. Subsequent testing in the following months confirmed the diagnosis with deficient pyruvate dehydrogenase enzyme activity, reduced protein levels of E3-binding protein, and confirmed by mRNA sequencing to lead to the inclusion of a cryptic exon and a premature stop codon. This case highlights the power of rapid proteomics in guiding genomic analysis. It also shows a promising role for dichloroacetate treatment in controlling lactic acidosis related to PDHX-related pyruvate dehydrogenase complex deficiency.
RESUMO
Pathogenic ACAD9 variants cause complex I deficiency. Patients presenting in infancy unresponsive to riboflavin have high mortality. A six-month-old infant presented with riboflavin unresponsive lactic acidosis and life-threatening cardiomyopathy. Treatment with high dose bezafibrate and nicotinamide riboside resulted in marked clinical improvement including reduced lactate and NT-pro-brain type natriuretic peptide levels, with stabilized echocardiographic measures. After a long stable period, the child succumbed from cardiac failure with infection at 10.5 months. Therapy was well tolerated. Peak bezafibrate levels exceeded its EC50. The clinical improvement with this treatment illustrates its potential, but weak PPAR agonist activity of bezafibrate limited its efficacy.
Assuntos
Acidose Láctica , Bezafibrato , Cardiomiopatias , Niacinamida , Compostos de Piridínio , Humanos , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Bezafibrato/uso terapêutico , Acidose Láctica/tratamento farmacológico , Lactente , Compostos de Piridínio/uso terapêutico , Masculino , Resultado do Tratamento , Acil-CoA Desidrogenase/deficiência , Evolução FatalRESUMO
By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.
Assuntos
Asma , Proteínas Ligadas por GPI , Interleucina-13 , Lectinas , Mucina-5AC , Muco , Criança , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratória/metabolismoRESUMO
Biallelic pathogenic variants in UQCRFS1 underlie a rare form of isolated mitochondrial complex III deficiency associated with lactic acidosis and a distinctive scalp alopecia previously described in two unrelated probands. Here, we describe a participant in the Undiagnosed Diseases Network (UDN) with a dual diagnosis of two autosomal recessive disorders revealed by genome sequencing: UQCRFS1-related mitochondrial complex III deficiency and GJA8-related cataracts. Both pathogenic variants have been reported before: UQCRFS1 (NM_006003.3:c.215-1 G>C, p.Val72_Thr81del10) in a case with mitochondrial complex III deficiency and GJA8 (NM 005267.5:c.736 G>T, p.Glu246*) as a somatic change in aged cornea leading to decreased junctional coupling. A multi-modal approach combining enzyme assays and cellular proteomics analysis provided clear evidence of complex III respiratory chain dysfunction and low abundance of the Rieske iron-sulfur protein, validating the pathogenic effect of the UQCRFS1 variant. This report extends the genotypic and phenotypic spectrum for these two rare disorders and highlights the utility of deep phenotyping and genomics data to achieve diagnosis and insights into rare disease.
RESUMO
Allergy and asthma pathogenesis are associated with the dysregulation of metabolic pathways. To understand the effects of allergen sensitization on metabolic pathways, we conducted a multi-omics study using BALB/cJ mice sensitized to house dust mite (HDM) extract or saline. Lung tissue was used to perform untargeted metabolomics and transcriptomics while both lung tissue and plasma were used for targeted lipidomics. Following statistical comparisons, an integrated pathway analysis was conducted. Histopathological changes demonstrated an allergic response in HDM-sensitized mice. Untargeted metabolomics showed 391 lung tissue compounds were significantly different between HDM and control mice (adjusted p < 0.05); with most compounds mapping to glycerophospholipid and sphingolipid pathways. Several lung oxylipins, including 14-HDHA, 8-HETE, 15-HETE, 6-keto-PGF1α, and PGE2 were significantly elevated in HDM-sensitized mice (p < 0.05). Global gene expression analysis showed upregulated calcium channel, G protein-signaling, and mTORC1 signaling pathways. Genes related to oxylipin metabolism such as Cox, Cyp450s, and cPla2 trended upwards. Joint analysis of metabolomics and transcriptomics supported a role for glycerophospholipid and sphingolipid metabolism following HDM sensitization. Collectively, our multi-omics results linked decreased glycerophospholipid and sphingolipid compounds and increased oxylipins with allergic sensitization; concurrent upregulation of associated gene pathways supports a role for bioactive lipids in the pathogenesis of allergy and asthma.
RESUMO
In the U.S., alcohol-associated liver disease (ALD) impacts millions of people and is a major healthcare burden. While the pathology of ALD is unmistakable, the molecular mechanisms underlying ethanol hepatotoxicity are not fully understood. Hepatic ethanol metabolism is intimately linked with alterations in extracellular and intracellular metabolic processes, specifically oxidation/reduction reactions. The xenobiotic detoxification of ethanol leads to significant disruptions in glycolysis, ß-oxidation, and the TCA cycle, as well as oxidative stress. Perturbation of these regulatory networks impacts the redox status of critical regulatory protein thiols throughout the cell. Integrating these key concepts, our goal was to apply a cutting-edge approach toward understanding mechanisms of ethanol metabolism in disrupting hepatic thiol redox signaling. Utilizing a chronic murine model of ALD, we applied a cysteine targeted click chemistry enrichment coupled with quantitative nano HPLC-MS/MS to assess the thiol redox proteome. Our strategy reveals that ethanol metabolism largely reduces the cysteine proteome, with 593 cysteine residues significantly reduced and 8 significantly oxidized cysteines. Ingenuity Pathway Analysis demonstrates that ethanol metabolism reduces specific cysteines throughout ethanol metabolism (Adh1, Cat, Aldh2), antioxidant pathways (Prx1, Mgst1, Gsr), as well as many other biochemical pathways. Interestingly, a sequence motif analysis of reduced cysteines showed a correlation for hydrophilic, charged amino acids lysine or glutamic acid nearby. Further research is needed to determine how a reduced cysteine proteome impacts individual protein activity across these protein targets and pathways. Additionally, understanding how a complex array of cysteine-targeted post-translational modifications (e.g., S-NO, S-GSH, S-OH) are integrated to regulate redox signaling and control throughout the cell is key to the development of redox-centric therapeutic agents targeted to ameliorate the progression of ALD.
Assuntos
Cisteína , Compostos de Sulfidrila , Camundongos , Animais , Cisteína/metabolismo , Compostos de Sulfidrila/metabolismo , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Química Click , Oxirredução , EtanolRESUMO
Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65-75 years) were incubated with aggrelyte-2 (500 µM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%-30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC-MS/MS results showed Nε -acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.
Assuntos
Cristalinas , Cristalino , Presbiopia , Humanos , Animais , Camundongos , Idoso , Lisina/metabolismo , Presbiopia/metabolismo , Solubilidade , Cromatografia Líquida , Acetilação , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Cristalino/metabolismo , Cristalinas/análise , Cristalinas/metabolismo , Água/análise , Água/metabolismo , Dissulfetos/análise , Dissulfetos/metabolismoRESUMO
Natural products profoundly impact many research areas, including medicine, organic chemistry, and cell biology. However, discovery of new natural products suffers from a lack of high throughput analytical techniques capable of identifying structural novelty in the face of a high degree of chemical redundancy. Methods to select bacterial strains for drug discovery have historically been based on phenotypic qualities or genetic differences and have not been based on laboratory production of secondary metabolites. Therefore, untargeted LC/MS-based secondary metabolomics was evaluated to rapidly and efficiently analyze marine-derived bacterial natural products using LC/MS-principal component analysis (PCA). A major goal of this work was to demonstrate that LC/MS-PCA was effective for strain prioritization in a drug discovery program. As proof of concept, we evaluated LC/MS-PCA for strain selection to support drug discovery, for the discovery of unique natural products, and for rapid assessment of regulation of natural product production.
Assuntos
Produtos Biológicos/análise , Metabolômica , Bactérias/metabolismo , Produtos Biológicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Análise de Componente Principal , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
A lack of good methods for absolute quantification of natural products has limited the accuracy of high-throughput screening. Many currently used methods for quantification are either too slow or not amenable to the structural diversity of natural products. Recent developments in low-temperature evaporative light scattering detectors (ELSD-LT) have overcome several historical limitations of ELSDs, including analyte decomposition and low sensitivity. Primarily, ELSDs have been used for relative quantification and detection of compounds that lack a UV chromophore. In this study, we employ an ELSD-LT for absolute quantification of natural products. Calibration curves were constructed using a weighted least-squares analysis for a diverse set of natural products and other compounds. An average calibration curve was evaluated for the "universal" quantification of natural products. Optimization of ELSD-LT hardware and parameters improved sensitivity and throughput and established the utility of ELSD-LT for quantification of large natural product libraries.
Assuntos
Produtos Biológicos/análise , Luz , Espalhamento de Radiação , Algoritmos , Produtos Biológicos/química , Cromatografia Líquida de Alta Pressão/instrumentação , Estrutura MolecularRESUMO
The stress induced protein NQO1 can participate in a wide range of biological pathways which are dependent upon the interaction of NQO1 with protein targets. Many of the protein-protein interactions involving NQO1 have been shown to be regulated by the pyridine nucleotide redox balance. NQO1 can modify its conformation as a result of redox changes in pyridine nucleotides and sites on the C-terminal and helix seven regions of NQO1 have been identified as potential areas that may be involved in redox-dependent protein-protein interactions. Since post-translational modifications can modify the functionality of proteins, we examined whether redox-dependent conformational changes induced in NQO1 would alter lysine acetylation. Recombinant NQO1 was incubated with and without NADH then acetylated non-enzymatically by acetic anhydride or S-acetylglutathione (Ac-GSH). NQO1 acetylation was determined by immunoblot and site-specific lysine acetylation was quantified by mass spectrometry (MS). NQO1 was readily acetylated by acetic anhydride and Ac-GSH. Interestingly, despite a large number of lysine residues (9%) in NQO1 only a small subset of lysines were acetylated and the majority of these were located in or near the functional C-terminal or helix seven regions. Reduction of NQO1 by NADH prior to acetylation resulted in almost complete protection of NQO1 from lysine acetylation as confirmed by immunoblot analysis and MS. Lysines located within the redox-active C-terminus and helix seven regions were readily acetylated when NQO1 was in an oxidized conformation but were protected from acetylation when NQO1 was in the reduced conformation. To investigate regulatory mechanisms of enzymatic deacetylation, NQO1 was acetylated by Ac-GSH then exposed to purified sirtuins (SIRT 1-3) or histone deacetylase 6 (HDAC6). NQO1 could be deacetylated by all sirtuin isoforms and quantitative MS analysis performed using SIRT2 revealed very robust deacetylation of NQO1, specifically at K262 and K271 in the C-terminal region. No deacetylation of NQO1 by HDAC6 was detected. These data demonstrate that the same subset of key lysine residues in the C-terminal and helix seven regions of NQO1 undergo redox dependent acetylation and are regulated by sirtuin-mediated deacetylation.
RESUMO
Alcohol consumption remains a leading cause of liver disease worldwide, resulting in a complex array of hepatic pathologies, including steatosis, steatohepatitis, and cirrhosis. Individuals who progress to a rarer form of alcohol-associated liver disease (ALD), alcohol-associated hepatitis (AH), require immediate life-saving intervention in the form of liver transplantation. Rapid onset of AH is poorly understood and the metabolic mechanisms contributing to the progression to liver failure remain undetermined. While multiple mechanisms have been identified that contribute to ALD, no cures exist and mortality from AH remains high. To identify novel pathways associated with AH, our group utilized proteomics to investigate AH-specific biomarkers in liver explant tissues. The goal of the present study was to determine changes in the proteome as well as epigenetic changes occurring in AH. Protein abundance and acetylomic analyses were performed utilizing nHPLC-MS/MS, revealing significant changes to proteins associated with metabolic and inflammatory fibrosis pathways. Here, we describe a novel hepatic and serum biomarker of AH, glycoprotein NMB (GPNMB). The anti-inflammatory protein GPNMB was significantly increased in AH explant liver and serum compared to healthy donors by 50-fold and 6.5-fold, respectively. Further, bioinformatics analyses identified an AH-dependent decrease in protein abundance across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. The greatest increases in protein abundance were observed in pathways for focal adhesion, lysosome, phagosome, and actin cytoskeleton. In contrast with the hyperacetylation observed in murine models of ALD, protein acetylation was decreased in AH compared to normal liver across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. Interestingly, immunoblot analysis found epigenetic marks were significantly increased in AH explants, including Histone H3K9 and H2BK5 acetylation. The increased acetylation of histones likely plays a role in the altered proteomic profile observed, including increases in GPNMB. Indeed, our results reveal that the AH proteome is dramatically impacted through unanticipated and unknown mechanisms. Understanding the origin and consequences of these changes will yield new mechanistic insight for ALD as well as identify novel hepatic and serum biomarkers, such as GPNMB.
Assuntos
Hepatite Alcoólica , Proteômica , Animais , Biomarcadores/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas/metabolismo , Humanos , Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Espectrometria de Massas em TandemRESUMO
Exosomes are 50- to 150-nm-diameter extracellular vesicles secreted by all mammalian cells except mature red blood cells and contribute to diverse physiological and pathological functions within the body. Many methods have been used to isolate and analyze exosomes, resulting in inconsistencies across experiments and raising questions about how to compare results obtained using different approaches. Questions have also been raised regarding the purity of the various preparations with regard to the sizes and types of vesicles and to the presence of lipoproteins. Thus, investigators often find it challenging to identify the optimal exosome isolation protocol for their experimental needs. Our laboratories have compared ultracentrifugation and commercial precipitation- and column-based exosome isolation kits for exosome preparation. Here, we present protocols for exosome isolation using two of the most commonly used methods, ultracentrifugation and precipitation, followed by downstream analyses. We use NanoSight nanoparticle tracking analysis and flow cytometry (Cytek® ) to determine exosome concentrations and sizes. Imaging flow cytometry can be utilized to both size exosomes and immunophenotype surface markers on exosomes (ImageStream® ). High-performance liquid chromatography followed by nano-flow liquid chromatography-mass spectrometry (LCMS) of the exosome fractions can be used to determine the presence of lipoproteins, with LCMS able to provide a proteomic profile of the exosome preparations. We found that the precipitation method was six times faster and resulted in a â¼2.5-fold higher concentration of exosomes per milliliter compared to ultracentrifugation. Both methods yielded extracellular vesicles in the size range of exosomes, and both preparations included apoproteins. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Pre-analytic fluid collection and processing Basic Protocol 2: Exosome isolation by ultracentrifugation Alternate Protocol 1: Exosome isolation by precipitation Basic Protocol 3: Analysis of exosomes by NanoSight nanoparticle tracking analysis Alternate Protocol 2: Analysis of exosomes by flow cytometry and imaging flow cytometry Basic Protocol 4: Downstream analysis of exosomes using high-performance liquid chromatography Basic Protocol 5: Downstream analysis of the exosome proteome using nano-flow liquid chromatography-mass spectrometry.
Assuntos
Exossomos , Nanopartículas/análise , Proteômica , Ultracentrifugação , Animais , Precipitação Química , Exossomos/química , Ultracentrifugação/métodosRESUMO
Chronic nutrient excess leads to metabolic disorders and insulin resistance. Activation of stress-responsive pathways via Nrf2 activation contributes to energy metabolism regulation. Here, inducible activation of Nrf2 in mice and transgenesis of the Nrf2 target, NQO1, conferred protection from diet-induced metabolic defects through preservation of glucose homeostasis, insulin sensitivity, and lipid handling with improved physiological outcomes. NQO1-RNA interaction mediated the association with and inhibition of the translational machinery in skeletal muscle of NQO1 transgenic mice. NQO1-Tg mice on high-fat diet had lower adipose tissue macrophages and enhanced expression of lipogenic enzymes coincident with reduction in circulating and hepatic lipids. Metabolomics data revealed a systemic metabolic signature of improved glucose handling, cellular redox, and NAD+ metabolism while label-free quantitative mass spectrometry in skeletal muscle uncovered a distinct diet- and genotype-dependent acetylation pattern of SIRT3 targets across the core of intermediary metabolism. Thus, under nutritional excess, NQO1 transgenesis preserves healthful benefits.
RESUMO
Alcoholic liver disease (ALD) is a significant health hazard and economic burden affecting approximately 10 million people in the United States. ALD stems from the production of toxic-reactive metabolites, oxidative stress and fat accumulation in hepatocytes which ultimately results in hepatocyte death promoting hepatitis and fibrosis deposition. Monocyte-derived infiltrating Ly6Chi and Ly6Clow macrophages are instrumental in perpetuating and resolving the hepatitis and fibrosis associated with ALD pathogenesis. In the present study we isolated liver infiltrating macrophages from mice on an ethanol diet and subjected them to metabolomic and proteomic analysis to provide a broad assessment of the cellular metabolite and protein differences between infiltrating macrophage phenotypes. We identified numerous differentially regulated metabolites and proteins between Ly6Chi and Ly6Clow macrophages. Bioinformatic analysis for pathway enrichment of the differentially regulated metabolites showed a significant number of metabolites involved in the processes of glycerophospholipid metabolism, arachidonic acid metabolism and phospholipid biosynthesis. From analysis of the infiltrating macrophage proteome, we observed a significant enrichment in the biological processes of antigen presentation, actin polymerization and organization, phagocytosis and apoptotic regulation. The data presented herein could yield exciting new research avenues for the analysis of signaling pathways regulating macrophage polarization in ALD.
Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/farmacologia , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Animais , Biologia Computacional , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , ProteômicaRESUMO
SIRT3, the primary mitochondrial deacetylase, plays a significant role in enhancing the function of mitochondrial proteins. Downregulation of SIRT3 is a key component of metabolic syndrome, a precondition for obesity, diabetes and cardiovascular diseases. In this study, we examined the effects of brain mitochondrial protein hyperacetylation in western diet-fed Sirt3-/- mice, a model for metabolic syndrome. Brain mitochondrial proteins were hyperacetylated, following western diet feeding and Sirt3 deletion. To identity these hyperacetylated proteins, we performed a comprehensive acetylome analysis by label-free tandem mass spectrometry. Gene ontology pathway analysis revealed Sirt3 deletion-mediated downregulation of enzymes in several metabolic pathways, including fatty acid oxidation and tricarboxylic acid cycle. Mitochondrial respiration was impaired at multiple states, along with lower levels of mitochondrial fission proteins Mfn1 and Mfn2. Cleavage of procaspase-1 suggested inflammasome formation. Assembly of inflammasomes with caspase-1 and NLRP3 was detected as shown by proximity ligation assay. Markers of neuroinflammation including microgliosis and elevated brain IL-1ß expression were also observed. Importantly, these findings were further exacerbated in Sirt3-/- mice when fed a calorie-rich western diet. The observations of this study suggest that SIRT3 deficiency-induced brain mitochondrial dysfunction and neuroinflammation in metabolic syndrome may play a role in late-life cognitive decline.