Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(10): 1846-1857, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37077048

RESUMO

Single-particle electron cryo-microscopy (cryo-EM) has become an effective and straightforward approach to determine the structure of membrane proteins. However, obtaining cryo-EM grids of sufficient quality for high-resolution structural analysis remains a major bottleneck. One of the difficulties arises from the presence of detergents, which often leads to a lack of control of the ice thickness. Amphipathic polymers such as amphipols (APols) are detergent substitutes, which have proven to be valuable tools for cryo-EM studies. In this work, we investigate the physico-chemical behavior of APol- and detergent-containing solutions and show a correlation with the properties of vitreous thin films in cryo-EM grids. This study provides new insight on the potential of APols, allowing a better control of ice thickness while limiting protein adsorption at the air-water interface, as shown with the full-length mouse serotonin 5-HT3A receptor whose structure has been solved in APol. These findings may speed up the process of grid optimization to obtain high-resolution structures of membrane proteins.


Assuntos
Detergentes , Tensoativos , Animais , Camundongos , Tensoativos/química , Microscopia Crioeletrônica , Elétrons , Gelo , Proteínas de Membrana
2.
Q Rev Biophys ; 54: e6, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33785082

RESUMO

Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.


Assuntos
Elétrons , Proteínas de Membrana , Microscopia Crioeletrônica , Tensoativos
3.
Anal Chem ; 94(41): 14151-14158, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36200347

RESUMO

One of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs from membranes, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols, and ArylAPols was compared using as models (i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and (ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions.


Assuntos
Bacteriorodopsinas , Cicloparafinas , Carbono , Detergentes/química , Lipídeos , Maleatos/química , Polímeros/química , Poliestirenos/química
4.
Biomacromolecules ; 21(8): 3459-3467, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32602705

RESUMO

Membrane proteins (MPs) need to be extracted from biological membranes and purified in their native state for most structural and functional in vitro investigations. Amphiphilic copolymers, such as amphipols (APols), have emerged as very useful alternatives to detergents for keeping MPs water-soluble under their native form. However, classical APols, such as poly(acrylic acid) (PAA) derivatives, seldom enable direct MP extraction. Poly(styrene maleic anhydride) copolymers (SMAs), which bear aromatic rings as hydrophobic side groups, have been reported to be more effective extracting agents. In order to test the hypothesis of the role of cyclic hydrophobic moieties in membrane solubilization by copolymers, we have prepared PAA derivatives comprising cyclic rather than linear aliphatic side groups (CyclAPols). As references, APol A8-35, SMAs, and diisobutylene maleic acid (DIBMA) were compared with CyclAPols. Using as models the plasma membrane of Escherichia coli and the extraction-resistant purple membrane from Halobacterium salinarum, we show that CyclAPols combine the extraction efficiency of SMAs with the stabilization afforded to MPs by classical APols such as A8-35.


Assuntos
Cicloparafinas , Polímeros , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa