Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 577(7790): 399-404, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915375

RESUMO

Alzheimer's disease is an incurable neurodegenerative disorder in which neuroinflammation has a critical function1. However, little is known about the contribution of the adaptive immune response in Alzheimer's disease2. Here, using integrated analyses of multiple cohorts, we identify peripheral and central adaptive immune changes in Alzheimer's disease. First, we performed mass cytometry of peripheral blood mononuclear cells and discovered an immune signature of Alzheimer's disease that consists of increased numbers of CD8+ T effector memory CD45RA+ (TEMRA) cells. In a second cohort, we found that CD8+ TEMRA cells were negatively associated with cognition. Furthermore, single-cell RNA sequencing revealed that T cell receptor (TCR) signalling was enhanced in these cells. Notably, by using several strategies of single-cell TCR sequencing in a third cohort, we discovered clonally expanded CD8+ TEMRA cells in the cerebrospinal fluid of patients with Alzheimer's disease. Finally, we used machine learning, cloning and peptide screens to demonstrate the specificity of clonally expanded TCRs in the cerebrospinal fluid of patients with Alzheimer's disease to two separate Epstein-Barr virus antigens. These results reveal an adaptive immune response in the blood and cerebrospinal fluid in Alzheimer's disease and provide evidence of clonal, antigen-experienced T cells patrolling the intrathecal space of brains affected by age-related neurodegeneration.


Assuntos
Doença de Alzheimer/imunologia , Linfócitos T CD8-Positivos/imunologia , Líquido Cefalorraquidiano/imunologia , Idoso , Sequência de Aminoácidos , Estudos de Coortes , Humanos , Memória Imunológica , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Sequência de Proteína
2.
Glia ; 72(2): 362-374, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846809

RESUMO

Cerebral organoids (CerOrgs) derived from human induced pluripotent stem cells (iPSCs) are a valuable tool to study human astrocytes and their interaction with neurons and microglia. The timeline of astrocyte development and maturation in this model is currently unknown and this limits the value and applicability of the model. Therefore, we generated CerOrgs from three healthy individuals and assessed astrocyte maturation after 5, 11, 19, and 37 weeks in culture. At these four time points, the astrocyte lineage was isolated based on the expression of integrin subunit alpha 6 (ITGA6). Based on the transcriptome of the isolated ITGA6-positive cells, astrocyte development started between 5 and 11 weeks in culture and astrocyte maturation commenced after 11 weeks in culture. After 19 weeks in culture, the ITGA6-positive astrocytes had the highest expression of human mature astrocyte genes, and the predicted functional properties were related to brain homeostasis. After 37 weeks in culture, a subpopulation of ITGA6-negative astrocytes appeared, highlighting the heterogeneity within the astrocytes. The morphology shifted from an elongated progenitor-like morphology to the typical bushy astrocyte morphology. Based on the morphological properties, predicted functional properties, and the similarities with the human mature astrocyte transcriptome, we concluded that ITGA6-positive astrocytes have developed optimally in 19-week-old CerOrgs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transcriptoma , Humanos , Células Cultivadas , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Perfilação da Expressão Gênica , Organoides , Diferenciação Celular
3.
J Neurosci Res ; 102(3): e25295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515329

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aß) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from male APPswe/PS1dE9 (APP/PS1) mice and wild-type littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single-cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentially reflect the initial response of microglia to Aß.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Lactente , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Placa Amiloide , Presenilina-1/genética , Transcriptoma
4.
J Neuroinflammation ; 20(1): 179, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516868

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients initially develop respiratory symptoms, but they may also suffer from neurological symptoms. People with long-lasting effects after acute infections with severe respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., post-COVID syndrome or long COVID, may experience a variety of neurological manifestations. Although we do not fully understand how SARS-CoV-2 affects the brain, neuroinflammation likely plays a role. METHODS: To investigate neuroinflammatory processes longitudinally after SARS-CoV-2 infection, four experimentally SARS-CoV-2 infected rhesus macaques were monitored for 7 weeks with 18-kDa translocator protein (TSPO) positron emission tomography (PET) using [18F]DPA714, together with computed tomography (CT). The baseline scan was compared to weekly PET-CTs obtained post-infection (pi). Brain tissue was collected following euthanasia (50 days pi) to correlate the PET signal with TSPO expression, and glial and endothelial cell markers. Expression of these markers was compared to brain tissue from uninfected animals of comparable age, allowing the examination of the contribution of these cells to the neuroinflammatory response following SARS-CoV-2 infection. RESULTS: TSPO PET revealed an increased tracer uptake throughout the brain of all infected animals already from the first scan obtained post-infection (day 2), which increased to approximately twofold until day 30 pi. Postmortem immunohistochemical analysis of the hippocampus and pons showed TSPO expression in cells expressing ionized calcium-binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and collagen IV. In the hippocampus of SARS-CoV-2 infected animals the TSPO+ area and number of TSPO+ cells were significantly increased compared to control animals. This increase was not cell type specific, since both the number of IBA1+TSPO+ and GFAP+TSPO+ cells was increased, as well as the TSPO+ area within collagen IV+ blood vessels. CONCLUSIONS: This study manifests [18F]DPA714 as a powerful radiotracer to visualize SARS-CoV-2 induced neuroinflammation. The increased uptake of [18F]DPA714 over time implies an active neuroinflammatory response following SARS-CoV-2 infection. This inflammatory signal coincides with an increased number of TSPO expressing cells, including glial and endothelial cells, suggesting neuroinflammation and vascular dysregulation. These results demonstrate the long-term neuroinflammatory response following a mild SARS-CoV-2 infection, which potentially precedes long-lasting neurological symptoms.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Macaca mulatta , Doenças Neuroinflamatórias , COVID-19/diagnóstico por imagem , Células Endoteliais , Síndrome de COVID-19 Pós-Aguda , Tomografia por Emissão de Pósitrons , Inflamação/diagnóstico por imagem , Colágeno Tipo IV , Receptores de GABA
5.
Brain Behav Immun ; 107: 225-241, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270437

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aß) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aß42 levels, and occurred well before the presence of Aß plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aß levels or Aß plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Transtornos da Memória/prevenção & controle
6.
Neurochem Res ; 48(4): 1026-1046, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35976488

RESUMO

Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Sistema Nervoso Central , Neurônios/patologia , Astrócitos/patologia , Microglia/patologia
7.
Brain Behav Immun ; 100: 219-230, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896594

RESUMO

Dysregulation of microglial function contributes to Alzheimer's disease (AD) pathogenesis. Several genetic and transcriptome studies have revealed microglia specific genetic risk factors, and changes in microglia expression profiles in AD pathogenesis, viz. the human-Alzheimer's microglia/myeloid (HAM) profile in AD patients and the disease-associated microglia profile (DAM) in AD mouse models. The transcriptional changes involve genes in immune and inflammatory pathways, and in pathways associated with Aß clearance. Aß oligomers have been suggested to be the initial trigger of microglia activation in AD. To study the direct response to Aß oligomers exposure, we assessed changes in gene expression in an in vitro model for microglia, the human monocyte-derived microglial-like (MDMi) cells. We confirmed the initiation of an inflammatory profile following LPS stimulation, based on increased expression of IL1B, IL6, and TNFα. In contrast, the Aß1-42 oligomers did not induce an inflammatory profile or a classical HAM profile. Interestingly, we observed a specific increase in the expression of metallothioneins in the Aß1-42 oligomer treated MDMi cells. Metallothioneins are involved in metal ion regulation, protection against reactive oxygen species, and have anti-inflammatory properties. In conclusion, our data suggests that exposure to Aß1-42 oligomers may initially trigger a protective response in vitro.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Microglia/metabolismo , Monócitos/metabolismo , Fragmentos de Peptídeos , Transcriptoma
8.
Glia ; 69(8): 1852-1881, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33634529

RESUMO

Astrocytes regulate synaptic communication and are essential for proper brain functioning. In Alzheimer's disease (AD) astrocytes become reactive, which is characterized by an increased expression of intermediate filament proteins and cellular hypertrophy. Reactive astrocytes are found in close association with amyloid-beta (Aß) deposits. Synaptic communication and neuronal network function could be directly modulated by reactive astrocytes, potentially contributing to cognitive decline in AD. In this review, we focus on reactive astrocytes as treatment targets in AD in the APPswePS1dE9 AD mouse model, a widely used model to study amyloidosis and gliosis. We first give an overview of the model; that is, how it was generated, which cells express the transgenes, and the effect of its genetic background on Aß pathology. Subsequently, to determine whether modifying reactive astrocytes in AD could influence pathogenesis and cognition, we review studies using this mouse model in which interventions were directly targeted at reactive astrocytes or had an indirect effect on reactive astrocytes. Overall, studies specifically targeting astrocytes to reduce astrogliosis showed beneficial effects on cognition, which indicates that targeting astrocytes should be included in developing novel therapies for AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Gliose/patologia , Camundongos , Camundongos Transgênicos
9.
Neurochem Res ; 46(10): 2662-2675, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33559106

RESUMO

Ageing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer's disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Senescência Celular/fisiologia , Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Animais , Apolipoproteína E4/metabolismo , Humanos , Doenças Neuroinflamatórias/fisiopatologia
10.
iScience ; 27(5): 109777, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38711458

RESUMO

Although adeno-associated virus 9 (AAV9) has been highly exploited as delivery platform for gene-based therapies, its efficacy is hampered by low efficiency in crossing the adult blood-brain barrier (BBB) and pronounced targeting to the liver upon intravenous delivery. We generated a new galactose binding-deficient AAV9 peptide display library and selected two new AAV9 engineered capsids with enhanced targeting in mouse and marmoset brains after intravenous delivery. Interestingly, the loss of galactose binding greatly reduced undesired targeting to peripheral organs, particularly the liver, while not compromising transduction of the brain vasculature. However, the galactose binding was necessary to efficiently infect non-endothelial brain cells. Thus, the combinatorial actions of the galactose-binding domain and the incorporated displayed peptide are crucial to enhance BBB crossing along with brain cell transduction. This study describes two novel capsids with high brain endothelial infectivity and extremely low liver targeting based on manipulating the AAV9 galactose-binding domain.

11.
Development ; 137(2): 313-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040497

RESUMO

A subpopulation of glial fibrillary acidic protein (GFAP)-expressing cells located along the length of the lateral ventricles in the subventricular zone (SVZ) have been identified as the multipotent neural stem cells of the adult mammalian brain. We have previously found that, in the adult human brain, a splice variant of GFAP, termed GFAPdelta, was expressed specifically in these cells. To investigate whether GFAPdelta is also present in the precursors of SVZ astrocytes during development and whether GFAPdelta could play a role in the developmental process, we analyzed GFAPdelta expression in the normal developing human cortex and in the cortex of foetuses with the migration disorder lissencephaly type II. We demonstrated for the first time that GFAPdelta is specifically expressed in radial glia and SVZ neural progenitors during human brain development. Expression of GFAPdelta in radial glia starts at around 13 weeks of pregnancy and disappears before birth. GFAPdelta is continuously expressed in the SVZ progenitors at later gestational ages and in the postnatal brain. Co-localization with Ki67 proved that these GFAPdelta-expressing cells are able to proliferate. Furthermore, we showed that the expression pattern of GFAPdelta was disturbed in lissencephaly type II. Overall, these results suggest that the adult SVZ is indeed a remnant of the foetal SVZ, which develops from radial glia. Furthermore, we provide evidence that GFAPdelta can distinguish resting astrocytes from proliferating SVZ progenitors.


Assuntos
Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Isoformas de Proteínas/fisiologia , Western Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Proliferação de Células , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína Glial Fibrilar Ácida/genética , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Front Cell Neurosci ; 16: 899251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783099

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, affecting 35 million people worldwide. One pathological feature of progressing AD is the loss of synapses. This is the strongest correlate of cognitive decline. Astrocytes, as an essential part of the tripartite synapse, play a role in synapse formation, maintenance, and elimination. During AD, astrocytes get a reactive phenotype with an altered gene expression profile and changed function compared to healthy astrocytes. This process likely affects their interaction with synapses. This systematic review aims to provide an overview of the scientific literature including information on how astrocytes affect synapse formation and elimination in the brain of AD patients and in animal models of the disease. We review molecular and cellular changes in AD astrocytes and conclude that these predominantly result in lower synapse numbers, indicative of decreased synapse support or even synaptotoxicity, or increased elimination, resulting in synapse loss, and consequential cognitive decline, as associated with AD. Preventing AD induced changes in astrocytes might therefore be a potential therapeutic target for dementia. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=148278, identifier [CRD148278].

13.
J Alzheimers Dis ; 89(1): 283-297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871343

RESUMO

BACKGROUND: Aging is characterized by systemic alterations and forms an important risk factor for Alzheimer's disease (AD). Recently, it has been indicated that blood-borne factors present in the systemic milieu contribute to the aging process. Exposing young mice to aged blood plasma results in impaired neurogenesis and synaptic plasticity in the dentate gyrus, as well as impaired cognition. Vice versa, treating aged mice with young blood plasma rescues impairments associated with aging. OBJECTIVE: Whether blood-borne factors are sufficient to drive impairments outside the dentate gyrus, how they impact neurophysiology, and how the functional outcome compares to impairments found in mouse models for AD is still unclear. METHODS: Here, we treated adult mice with blood plasma from aged mice and assessed neurophysiological parameters in the hippocampal CA1. RESULTS: Mice treated with aged blood plasma show significantly impaired levels of long-term potentiation (LTP), similar to those present in APP/PS1 mice. These impaired levels of LTP in plasma-treated mice are associated with alterations in basic properties of glutamatergic transmission and the enhanced activity of voltage-gated Ca2+ channels. CONCLUSION: Together, the data presented in this study show that blood-borne factors are sufficient to drive neurophysiological impairments in the hippocampal CA1.


Assuntos
Doença de Alzheimer , Neurofisiologia , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Hipocampo , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Plasma
14.
Neurobiol Aging ; 113: 28-38, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294867

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. Despite many years of research, very limited treatment options are available. Here we aim to establish a well-defined learning and memory performance test for an AD mouse model, which can be used in future studies to evaluate the effect of novel drugs, treatments, and interventions. We exposed 9-month-old APPswe/PSEN1dE9 mice to a battery of memory tests to determine which test is best suited to study memory deficits in this specific AD mouse model. Since in more recent years it has become clear that there are sex-dependent differences in AD pathology, we also assessed differences in performance between male and female mice. From our test battery, we conclude that the Barnes maze task, which spans multiple days, is better suited to study subtle learning and memory deficits in 9-month-old APPswe/PS1dE9 mice, than the 2 trial T-maze and Fear conditioning task. This test revealed deficits in both spatial memory and cognitive flexibility in the APPswe/PS1dE9 mice compared to wildtype littermates. Furthermore, we conclude that there are no sex dependent memory deficit differences in this AD mouse model at this age.


Assuntos
Doença de Alzheimer , Memória Espacial , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Cognição , Modelos Animais de Doenças , Feminino , Masculino , Aprendizagem em Labirinto , Transtornos da Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética
15.
Nutrients ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631316

RESUMO

Evidence of the impact of nutrition on human brain development is compelling. Previous in vitro and in vivo results show that three specific amino acids, histidine, lysine, and threonine, synergistically inhibit mTOR activity and behavior. Therefore, the prenatal availability of these amino acids could be important for human neurodevelopment. However, methods to study the underlying mechanisms in a human model of neurodevelopment are limited. Here, we pioneer the use of human cerebral organoids to investigate the impact of amino acid supplementation on neurodevelopment. In this study, cerebral organoids were exposed to 10 mM and 50 mM of the amino acids threonine, histidine, and lysine. The impact was determined by measuring mTOR activity using Western blots, general cerebral organoid size, and gene expression by RNA sequencing. Exposure to threonine, histidine, and lysine led to decreased mTOR activity and markedly reduced organoid size, supporting findings in rodent studies. RNA sequencing identified comprehensive changes in gene expression, with enrichment in genes related to specific biological processes (among which are mTOR signaling and immune function) and to specific cell types, including proliferative precursor cells, microglia, and astrocytes. Altogether, cerebral organoids are responsive to nutritional exposure by increasing specific amino acid concentrations and reflect findings from previous rodent studies. Threonine, histidine, and lysine exposure impacts the early development of human cerebral organoids, illustrated by the inhibition of mTOR activity, reduced size, and altered gene expression.


Assuntos
Aminoácidos , Histidina , Aminoácidos/metabolismo , Histidina/farmacologia , Humanos , Lisina/farmacologia , Organoides , Serina-Treonina Quinases TOR , Treonina
16.
Nat Commun ; 13(1): 7210, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418303

RESUMO

Myeloid cells are suggested as an important player in Alzheimer´s disease (AD). However, its continuum of phenotypic and functional changes across different body compartments and their use as a biomarker in AD remains elusive. Here, we perform multiple state-of-the-art analyses to phenotypically and metabolically characterize immune cells between peripheral blood (n = 117), cerebrospinal fluid (CSF, n = 117), choroid plexus (CP, n = 13) and brain parenchyma (n = 13). We find that CSF cells increase expression of markers involved in inflammation, phagocytosis, and metabolism. Changes in phenotype of myeloid cells from AD patients are more pronounced in CP and brain parenchyma and upon in vitro stimulation, suggesting that AD-myeloid cells are more vulnerable to environmental changes. Our findings underscore the importance of myeloid cells in AD and the detailed characterization across body compartments may serve as a resource for future studies focusing on the assessment of these cells as biomarkers in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Plexo Corióideo/metabolismo , Células Mieloides/metabolismo , Células Progenitoras Mieloides/metabolismo , Biomarcadores/metabolismo , Fenótipo
17.
Aging Cell ; 21(1): e13521, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894056

RESUMO

The increase in senescent cells in tissues, including the brain, is a general feature of normal aging and age-related pathologies. Senescent cells exhibit a specific phenotype, which includes an altered nuclear morphology and transcriptomic changes. Astrocytes undergo senescence in vitro and in age-associated neurodegenerative diseases, but little is known about whether this process also occurs in physiological aging, as well as its functional implication. Here, we investigated astrocyte senescence in vitro, in old mouse brains, and in post-mortem human brain tissue of elderly. We identified a significant loss of lamin-B1, a major component of the nuclear lamina, as a hallmark of senescent astrocytes. We showed a severe reduction of lamin-B1 in the dentate gyrus of aged mice, including in hippocampal astrocytes, and in the granular cell layer of the hippocampus of post-mortem human tissue from non-demented elderly. The lamin-B1 reduction was associated with nuclear deformations, represented by an increased incidence of invaginated nuclei and loss of nuclear circularity in senescent astrocytes in vitro and in the aging human hippocampus. We also found differences in lamin-B1 levels and astrocyte nuclear morphology between the granular cell layer and polymorphic layer in the elderly human hippocampus, suggesting an intra-regional-dependent aging response of human astrocytes. Moreover, we described senescence-associated impaired neuritogenic and synaptogenic capacity of mouse astrocytes. Our findings show that reduction of lamin-B1 is a conserved feature of hippocampal cells aging, including astrocytes, and shed light on significant defects in nuclear lamina structure which may contribute to astrocyte dysfunctions during aging.


Assuntos
Astrócitos/metabolismo , Hipocampo/fisiopatologia , Lamina Tipo B/metabolismo , Animais , Senescência Celular , Humanos , Camundongos
18.
Viruses ; 14(4)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458506

RESUMO

SARS-CoV-2 causes acute respiratory disease, but many patients also experience neurological complications. Neuropathological changes with pronounced neuroinflammation have been described in individuals after lethal COVID-19, as well as in the CSF of hospitalized patients with neurological complications. To assess whether neuropathological changes can occur after a SARS-CoV-2 infection, leading to mild-to-moderate disease, we investigated the brains of four rhesus and four cynomolgus macaques after pulmonary disease and without overt clinical symptoms. Postmortem analysis demonstrated the infiltration of T-cells and activated microglia in the parenchyma of all infected animals, even in the absence of viral antigen or RNA. Moreover, intracellular α-synuclein aggregates were found in the brains of both macaque species. The heterogeneity of these manifestations in the brains indicates the virus' neuropathological potential and should be considered a warning for long-term health risks, following SARS-CoV-2 infection.


Assuntos
COVID-19 , Encefalite , alfa-Sinucleína , Animais , Encefalite/metabolismo , Encefalite/virologia , Macaca mulatta/virologia , Agregados Proteicos , SARS-CoV-2 , alfa-Sinucleína/metabolismo
19.
FASEB J ; 23(8): 2710-26, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19332645

RESUMO

Increased expression of the astrocytic intermediate filament protein glial fibrillary acidic protein (GFAP) is a characteristic of astrogliosis. This process occurs in the brain during aging and neurodegeneration and coincides with impairment of the ubiquitin proteasome system. Inhibition of the proteasome impairs protein degradation; therefore, we hypothesized that the increase in GFAP may be the result of impaired proteasomal activity in astrocytes. We investigated the effect of proteasome inhibitors on GFAP expression and other intermediate filament proteins in human astrocytoma cells and in a rat brain model for astrogliosis. Extensive quantitative RT-PCR, immunocytochemistry, and Western blot analysis resulted unexpectedly in a strong decrease of GFAP mRNA to <4% of control levels [Control (DMSO) 100+/-19.2%; proteasome inhibitor (epoxomicin) 3.5+/-1.3%, n=8; P < or = 0.001] and a loss of GFAP protein in astrocytes in vitro. We show that the proteasome alters GFAP promoter activity, possibly mediated by transcription factors as demonstrated by a GFAP promoter-luciferase assay and RT(2) Profiler PCR array for human transcription factors. Most important, we demonstrate that proteasome inhibitors also reduce GFAP and vimentin expression in a rat model for induced astrogliosis in vivo. Therefore, proteasome inhibitors could serve as a potential therapy to modulate astrogliosis associated with CNS injuries and disease.


Assuntos
Astrócitos/metabolismo , Filamentos Intermediários/metabolismo , Inibidores de Proteassoma , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular , Regulação para Baixo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Células HeLa , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Transcrição Gênica , Vimentina/genética , Vimentina/metabolismo
20.
Brain Pathol ; 30(6): 1071-1086, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32876357

RESUMO

Pericytes are vascular mural cells that surround capillaries of the central nervous system (CNS). They are crucial for brain development and contribute to CNS homeostasis by regulating blood-brain barrier function and cerebral blood flow. It has been suggested that pericytes are lost in Alzheimer's disease (AD), implicating this cell type in disease pathology. Here, we have employed state-of-the-art stereological morphometry techniques as well as tissue clearing and two-photon imaging to assess the distribution of pericytes in two independent cohorts of AD (n = 16 and 13) and non-demented controls (n = 16 and 4). Stereological quantification revealed increased capillary density with a normal pericyte population in the frontal cortex of AD brains, a region with early amyloid ß deposition. Two-photon analysis of cleared frontal cortex tissue confirmed the preservation of pericytes in AD cases. These results suggest that pericyte demise is not a general hallmark of AD pathology.


Assuntos
Doença de Alzheimer/patologia , Capilares/patologia , Lobo Frontal/patologia , Pericitos/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Capilares/metabolismo , Circulação Cerebrovascular/fisiologia , Feminino , Lobo Frontal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/metabolismo , Pericitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa