Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(17): e2204726, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709484

RESUMO

Feedback-based single-particle tracking (SPT) is a powerful technique for investigating particle behavior with very high spatiotemporal resolution. The ability to follow different species and their interactions independently adds a new dimension to the information available from SPT. However, only a few approaches have been expanded to multiple colors and no method is currently available that can follow two differently labeled biomolecules in 4 dimensions independently. In this proof-of-concept paper, the new modalities available when performing 3D orbital tracking with a second detection channel are demonstrated. First, dual-color tracking experiments are described studying independently diffusing particles of different types. For interacting particles where their motion is correlated, a second modality is implemented where a particle is tracked in one channel and the position of the second fluorescence species is monitored in the other channel. As a third modality, 3D orbital tracking is performed in one channel while monitoring its spectral signature in a second channel. This last modality is used to successfully readout accurate Förster Resonance Energy Transfer (FRET) values over time while tracking a mobile particle.

2.
Data Brief ; 29: 105280, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32190718

RESUMO

Recently, a large number of single particle tracking (SPT) approaches have been developed. Generally, SPT techniques can be split into two groups: ex post facto approaches where trajectory extraction is carried out after data acquisition and feedback based approaches that perform particle tracking in real time [1]. One feedback approach is 3D Orbital Tracking, where the laser excitation beam is rotated in a circle about the object, generating a so called orbit [2,3]. By calculating the particle position from the detected intensity after every orbit in relation to its center, this method allows the microscope to follow a single object in real time. The high spatiotemporal resolution of this method and the potential to optically manipulate the followed object during the measurement promises to yield new deep insights into biological systems [4-7]. By upgrading this approach in a way that the specimen is recentered by a xy-stage on the center of the microscope, particle tracking with this long-range tracking feature is no longer limited to the covered field-of-view. This allows for the observation of mitochondrial trafficking in living zebrafish embryos over long distances. Here, we provide the raw data for antero- and retrograde movement of mitochondria labelled with photo-activatable green fluorescent protein (mitoPAGFP). It relates to the scientific article "Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo" [8]. By applying a correlation analysis on the trajectories, it is possible to distinguish between active transport and pausing events with less biasing compared to the mean squared displacement approach.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa