Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751693

RESUMO

Tumor-secreted extracellular vesicles (EVs) have been identified as mediators of cancer-host intercellular communication and shown to support pre-metastatic niche formation by modulating stromal cells at future metastatic sites. While osteosarcoma, the most common primary malignant bone tumor in children and adolescents, has a high propensity for pulmonary metastases, the interaction of osteosarcoma cells with resident lung cells remains poorly understood. Here, we deliver foundational in vitro evidence that osteosarcoma cell-derived EVs drive myofibroblast/cancer-associated fibroblast differentiation. Human lung fibroblasts displayed increased invasive competence, in addition to increased α-smooth muscle actin expression and fibronectin production upon EV treatment. Furthermore, we demonstrate, through the use of transforming growth factor beta receptor 1 (TGFBR1) inhibitors and CRISPR-Cas9-mediated knockouts, that TGFß1 present in osteosarcoma cell-derived EVs is responsible for lung fibroblast differentiation. Overall, our study highlights osteosarcoma-derived EVs as novel regulators of lung fibroblast activation and provides mechanistic insight into how osteosarcoma cells can modulate distant cells to potentially support metastatic progression.


Assuntos
Actinas/genética , Reprogramação Celular/genética , Osteossarcoma/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pulmão/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Osteossarcoma/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores
2.
Commun Biol ; 5(1): 795, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941177

RESUMO

MAP4K4 is associated with increased motility and reduced proliferation in tumor cells, but the regulation of this dichotomous functionality remained elusive. We find that MAP4K4 interacts with striatin 3 and 4 (STRN3/4) and that STRN3 and MAP4K4 exert opposing functions in Hippo signaling and clonal growth. However, depletion of either STRN3 or MAP4K4 in medulloblastoma cells reduces invasion, and loss of both proteins abrogates tumor cell growth in the cerebellar tissue. Mechanistically, STRN3 couples MAP4K4 to the protein phosphatase 2A, which inactivates growth repressing activities of MAP4K4. In parallel, STRN3 enables growth factor-induced PKCθ activation and direct phosphorylation of VASPS157 by MAP4K4, which both are necessary for efficient cell invasion. VASPS157 directed activity of MAP4K4 and STRN3 requires the CNH domain of MAP4K4, which mediates its interaction with striatins. Thus, STRN3 is a master regulator of MAP4K4 function, and disruption of its cooperation with MAP4K4 reactivates Hippo signaling and represses tissue invasion in medulloblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Autoantígenos/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proliferação de Células , Neoplasias Cerebelares/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Meduloblastoma/genética , Processos Neoplásicos , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética
3.
Life Sci Alliance ; 5(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35296518

RESUMO

The composition of the plasma membrane (PM)-associated proteome of tumor cells determines cell-cell and cell-matrix interactions and the response to environmental cues. Whether the PM-associated proteome impacts the phenotype of Medulloblastoma (MB) tumor cells and how it adapts in response to growth factor cues is poorly understood. Using a spatial proteomics approach, we observed that hepatocyte growth factor (HGF)-induced activation of the receptor tyrosine kinase c-MET in MB cells changes the abundance of transmembrane and membrane-associated proteins. The depletion of MAP4K4, a pro-migratory effector kinase downstream of c-MET, leads to a specific decrease of the adhesion and immunomodulatory receptor CD155 and of components of the fast-endophilin-mediated endocytosis (FEME) machinery in the PM-associated proteome of HGF-activated MB cells. The decreased surface expression of CD155 or of the fast-endophilin-mediated endocytosis effector endophilin-A1 reduces growth and invasiveness of MB tumor cells in the tissue context. These data thus describe a novel function of MAP4K4 in the control of the PM-associated proteome of tumor cells and identified two downstream effector mechanisms controlling proliferation and invasiveness of MB cells.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Endocitose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteínas Serina-Treonina Quinases , Proteoma , Proteômica
4.
Neoplasia ; 22(10): 470-483, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818841

RESUMO

Aberrantly activated kinase signaling pathways drive invasion and dissemination in medulloblastoma (MB). A majority of tumor-promoting kinase signaling pathways feed into the mitogen-activated protein kinase (MAPK) extracellular regulated kinase (ERK1/2) pathway. The activation status of ERK1/2 during invasion of MB cells is not known and its implication in invasion control unclear. We established a synthetic kinase activation relocation sensor (SKARS) for the MAPK ERK1/2 pathway in MB cells for real-time measuring of drug response. We used 3D invasion assays and organotypic cerebellum slice culture to test drug effects in a physiologically relevant tissue environment. We found that hepatocyte growth factor (HGF), epidermal growth factor (EGF), or basic fibroblast growth factor (bFGF) caused rapid nuclear ERK1/2 activation in MB cells, which persisted for several hours. Concomitant treatment with the BCR/ABL kinase inhibitor dasatinib completely repressed nuclear ERK1/2 activity induced by HGF and EGF but not by bFGF. Increased nuclear ERK1/2 activity correlated positively with speed of invasion. Dasatinib blocked ERK-associated invasion in the majority of cells, but we also observed fast-invading cells with low ERK1/2 activity. These ERK1/2-low, fast-moving cells displayed a rounded morphology, while ERK-high fast-moving cells displayed a mesenchymal morphology. Dasatinib effectively blocked EGF-induced proliferation while it only moderately repressed tissue invasion, indicating that a subset of cells may evade invasion repression by dasatinib through non-mesenchymal motility. Thus, growth factor-induced nuclear activation of ERK1/2 is associated with mesenchymal motility and proliferation in MB cells and can be blocked with the BCR/ABL kinase inhibitor dasatinib.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Cerebelares/patologia , Dasatinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Meduloblastoma/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Apoptose , Movimento Celular , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Invasividade Neoplásica , Células Tumorais Cultivadas
5.
Cancers (Basel) ; 11(12)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835472

RESUMO

In the Sonic Hedgehog (SHH) subgroup of medulloblastoma (MB), tumor initiation and progression are in part driven by smoothened (SMO) and fibroblast growth factor (FGF)-receptor (FGFR) signaling, respectively. We investigated the impact of the SMO-FGFR crosstalk on tumor growth and invasiveness in MB. We found that FGFR signaling represses GLI1 expression downstream of activated SMO in the SHH MB line DAOY and induces MKI67, HES1, and BMI1 in DAOY and in the group 3 MB line HD-MBO3. FGFR repression of GLI1 does not affect proliferation or viability, whereas inhibition of FGFR is necessary to release SMO-driven invasiveness. Conversely, SMO activation represses FGFR-driven sustained activation of nuclear ERK. Parallel activation of FGFR and SMO in ex vivo tumor cell-cerebellum slice co-cultures reduced invasion of tumor cells without affecting proliferation. In contrast, treatment of the cells with the SMO antagonist Sonidegib (LDE225) blocked invasion and proliferation in cerebellar slices. Thus, sustained, low-level SMO activation is necessary for proliferation and tissue invasion, whereas acute, pronounced activation of SMO can repress FGFR-driven invasiveness. This suggests that the tumor cell response is dependent on the relative local abundance of the two factors and indicates a paradigm of microenvironmental control of invasion in SHH MB through mutual control of SHH and FGFR signaling.

6.
Oncotarget ; 9(33): 23220-23236, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29796184

RESUMO

Local tissue infiltration of Medulloblastoma (MB) tumor cells precedes metastatic disease but little is still known about intrinsic regulation of migration and invasion in these cells. We found that MAP4K4, a pro-migratory Ser/Thr kinase, is overexpressed in 30% of primary MB tumors and that increased expression is particularly associated with the frequently metastatic SHH ß subtype. MAP4K4 is a driver of migration and invasion downstream of c-Met, which is transcriptionally up-regulated in SHH MB. Consistently, depletion of MAP4K4 in MB tumor cells restricts HGF-driven matrix invasion in vitro and brain tissue infiltration ex vivo. We show that these pro-migratory functions of MAP4K4 involve the activation of the integrin ß-1 adhesion receptor and are associated with increased endocytic uptake. The consequent enhanced recycling of c-Met caused by MAP4K4 results in the accumulation of activated c-Met in cytosolic vesicles, which is required for sustained signaling and downstream pathway activation. The parallel increase of c-Met and MAP4K4 expression in SHH MB could predict an increased potential of these tumors to infiltrate brain tissue and cause metastatic disease. Molecular targeting of the underlying accelerated endocytosis and receptor recycling could represent a novel approach to block pro-migratory effector functions of MAP4K4 in metastatic cancers.

8.
Oncotarget ; 7(33): 53540-53557, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27447550

RESUMO

Hypoxia inducible transcription factors (HIFs) are the main regulators of adaptive responses to hypoxia and are often activated in solid tumors, but their role in leukemia is less clear. In acute myeloid leukemia (AML), in particular, controversial new findings indicate that HIF-1α can act either as an oncogene or a tumor suppressor gene, and this may depend on the stage of leukemia development and/or the AML sub-type.In this study, we find that HIF-1α promotes leukemia progression in the acute monocytic leukemia sub-type of AML through activation of an invasive phenotype. By applying a list of validated HIF-1α-target genes to different AML sub-types, we identified a HIF-1α signature that typifies acute monocytic leukemia when compared with all other AML sub-types. We validated expression of this signature in cell lines and primary cells from AML patients. Interestingly, this signature is enriched for genes that control cell motility at different levels. As a consequence, inhibiting HIF-1α impaired leukemia cell migration, chemotaxis, invasion and transendothelial migration in vitro, and this resulted in impaired bone marrow homing and leukemia progression in vivo. Our data suggest that in acute monocytic leukemia an active HIF-1α-dependent pro-invasive pathway mediates the ability of leukemic cells to migrate and invade extramedullary sites and may be targeted to reduce leukemia dissemination.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leucemia Monocítica Aguda/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Progressão da Doença , Xenoenxertos , Humanos , Leucemia Monocítica Aguda/metabolismo , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa