Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982493

RESUMO

In this work, new composite films were prepared by incorporating the disintegrated bacterial cellulose (BCd) nanofibers and cerium oxide nanoparticles into chitosan (CS) matrices. The influence of the amount of nanofillers on the structure and properties of the polymer composites and the specific features of the intermolecular interactions in the materials were determined. An increase in film stiffness was observed as a result of reinforcing the CS matrix with BCd nanofibers: the Young's modulus increased from 4.55 to 6.3 GPa with the introduction of 5% BCd. A further increase in Young's modulus of 6.7 GPa and a significant increase in film strength (22% increase in yield stress compared to the CS film) were observed when the BCd concentration was increased to 20%. The amount of nanosized ceria affected the structure of the composite, followed by a change in the hydrophilic properties and texture of the composite films. Increasing the amount of nanoceria to 8% significantly improved the biocompatibility of the films and their adhesion to the culture of mesenchymal stem cells. The obtained nanocomposite films combine a number of favorable properties (good mechanical strength in dry and swollen states, improved biocompatibility in relation to the culture of mesenchymal stem cells), which allows us to recommend them for use as a matrix material for the culture of mesenchymal stem cells and wound dressings.


Assuntos
Quitosana , Nanocompostos , Nanofibras , Quitosana/química , Celulose/química , Nanofibras/química , Resistência à Tração , Nanocompostos/química
2.
Biomimetics (Basel) ; 8(7)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37999161

RESUMO

New composite hydrogels (CH) based on bacterial cellulose (BC) and poly-1-vinyl-1,2,4-triazole (PVT) doped with orthophosphoric acid (oPA), presenting interpenetrating polymeric networks (IPN), have been synthesized. The mesoscopic study of the supramolecular structure (SMS) of both native cellulose, produced by the strain Komagataeibacter rhaeticus, and the CH based on BC and containing PVT/oPA complex were carried out in a wide range of momentum transfer using ultra- and classical small-angle neutron scattering techniques. The two SMS hierarchical levels were revealed from 1.6 nm to 2.5 µm for the objects under investigation. In addition, it was shown that the native BC had a correlation peak on the small-angle scattering curves at 0.00124 Å-1, with the correlation length ξ being equal to ca. 510 nm. This motive was also retained in the IPN. The data obtained allowed the estimation of the fractal dimensions and ranges of self-similarity and gave new information about the BC mesostructure and its CH. Furthermore, we revealed them to be in coincidence with Brown's BC model, which was earlier supported by Fink's results.

3.
Materials (Basel) ; 13(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066426

RESUMO

A series of novel polysaccharide-based biocomposites was obtained by impregnation of bacterial cellulose produced by Komagataeibacter rhaeticus (BC) with the solutions of negatively charged polysaccharides-hyaluronan (HA), sodium alginate (ALG), or κ-carrageenan (CAR)-and subsequently with positively charged chitosan (CS). The penetration of the polysaccharide solutions into the BC network and their interaction to form a polyelectrolyte complex changed the architecture of the BC network. The structure, morphology, and properties of the biocomposites depended on the type of impregnated anionic polysaccharides, and those polysaccharides in turn determined the nature of the interaction with CS. The porosity and swelling of the composites increased in the order: BC-ALG-CS > BC-HA-CS > BC-CAR-CS. The composites show higher biocompatibility with mesenchymal stem cells than the original BC sample, with the BC-ALG-CS composite showing the best characteristics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa