Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674017

RESUMO

The mainstays of lung cancer pathogenesis are cell cycle progression dysregulation, impaired apoptosis, and unregulated cell proliferation. While individual microRNA (miR) targeting or delivering is a promising approach that has been extensively studied, combination of miR targeting can enhance therapeutic efficacy and overcome limitations present in individual miR regulations. We previously reported on the use of a miR-143 and miR-506 combination via transient transfections against lung cancer. In this study, we evaluated the effect of miR-143 and miR-506 under stable deregulations in A549 lung cancer cells. We used lentiviral transductions to either up- or downregulate the two miRs individually or in combination. The cells were sorted and analyzed for miR deregulation via qPCR. We determined the miR deregulations' effects on the cell cycle, cell proliferation, cancer cell morphology, and cell motility. Compared to the individual miR deregulations, the combined miR upregulation demonstrated a miR-expression-dependent G2 cell cycle arrest and a significant increase in the cell doubling time, whereas the miR-143/506 dual downregulation demonstrated increased cellular motility. Furthermore, the individual miR-143 and miR-506 up- and downregulations exhibited cellular responses lacking an apparent miR-expression-dependent response in the respective analyses. Our work here indicates that, unlike the individual miR upregulations, the combinatorial miR treatment remained advantageous, even under prolonged miR upregulation. Finally, our findings demonstrate potential advantages of miR combinations vs. individual miR treatments.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Regulação para Cima , MicroRNAs/genética , Humanos , Proliferação de Células/genética , Células A549 , Movimento Celular/genética , Regulação para Cima/genética , Ciclo Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Apoptose/genética
2.
Int J Cancer ; 153(5): 1051-1066, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260355

RESUMO

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) expressed in endothelial cells and required for stimulation of cell migration by vascular endothelial growth factor A165 (VEGFA165 ) and pleiotrophin (PTN). It is also over or under-expressed in various tumor types. In this study, we used genetically engineered Ptprz1-/- and Ptprz1+/+ mice to study mechanistic aspects of PTPRZ1 involvement in angiogenesis and investigate its role in lung adenocarcinoma (LUAD) growth. Ptprz1-/- lung microvascular endothelial cells (LMVEC) have increased angiogenic features compared with Ptprz1+/+ LMVEC, in line with the increased lung angiogenesis and the enhanced chemically induced LUAD growth in Ptprz1-/- compared with Ptprz1+/+ mice. In LUAD cells isolated from the lungs of urethane-treated mice, PTPRZ1 TP inhibition also enhanced proliferation and migration. Expression of beta 3 (ß3 ) integrin is decreased in Ptprz1-/- LMVEC, linked to enhanced VEGF receptor 2 (VEGFR2), c-Met tyrosine kinase (TK) and Akt kinase activities. However, only c-Met and Akt seem responsible for the enhanced endothelial cell activation in vitro and LUAD growth and angiogenesis in vivo in Ptprz1-/- mice. A selective PTPRZ1 TP inhibitor, VEGFA165 and PTN also activate c-Met and Akt in a PTPRZ1-dependent manner in endothelial cells, and their stimulatory effects are abolished by the c-Met TK inhibitor (TKI) crizotinib. Altogether, our data suggest that low PTPRZ1 expression is linked to worse LUAD prognosis and response to c-Met TKIs and uncover for the first time the role of PTPRZ1 in mediating c-Met activation by VEGFA and PTN.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Animais , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Células Endoteliais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo
3.
J Pharmacol Exp Ther ; 385(1): 35-49, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746610

RESUMO

Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Células HEK293 , Lipossomos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Angiogenesis ; 25(3): 373-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35103877

RESUMO

Lymphangiogenesis is an essential physiological process but also a determining factor in vascular-related pathological conditions. Angiopoietin-2 (Ang2) plays an important role in lymphatic vascular development and function and its upregulation has been reported in several vascular-related diseases, including cancer. Given the established role of the small GTPase RhoA on cytoskeleton-dependent endothelial functions, we investigated the relationship between RhoA and Ang2-induced cellular activities. This study shows that Ang2-driven human dermal lymphatic endothelial cell migration depends on RhoA. We demonstrate that Ang2-induced migration is independent of the Tie receptors, but dependent on ß1 integrin-mediated RhoA activation with knockdown, pharmacological approaches, and protein sequencing experiments. Although the key proteins downstream of RhoA, Rho kinase (ROCK) and myosin light chain, were activated, blockade of ROCK did not abrogate the Ang2-driven migratory effect. However, formins, an alternative target of RhoA, were identified as key players, and especially FHOD1. The Ang2-RhoA relationship was explored in vivo, where lymphatic endothelial RhoA deficiency blocked Ang2-induced lymphangiogenesis, highlighting RhoA as an important target for anti-lymphangiogenic treatments.


Assuntos
Angiopoietina-2 , Linfangiogênese , Proteína rhoA de Ligação ao GTP , Angiopoietina-2/metabolismo , Células Endoteliais/metabolismo , Forminas/metabolismo , Humanos , Integrina beta1/metabolismo , Receptor TIE-2/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 322(1): H8-H24, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767486

RESUMO

Protein tyrosine phosphatase receptor-ζ1 (PTPRZ1) is a transmembrane tyrosine phosphatase receptor highly expressed in embryonic stem cells. In the present work, gene expression analyses of Ptprz1-/- and Ptprz1+/+ mice endothelial cells and hearts pointed to an unidentified role of PTPRZ1 in heart development through the regulation of heart-specific transcription factor genes. Echocardiography analysis in mice identified that both systolic and diastolic functions are affected in Ptprz1-/- compared with Ptprz1+/+ hearts, based on a dilated left ventricular (LV) cavity, decreased ejection fraction and fraction shortening, and increased angiogenesis in Ptprz1-/- hearts, with no signs of cardiac hypertrophy. A zebrafish ptprz1-/- knockout was also generated and exhibited misregulated expression of developmental cardiac markers, bradycardia, and defective heart morphogenesis characterized by enlarged ventricles and defected contractility. A selective PTPRZ1 tyrosine phosphatase inhibitor affected zebrafish heart development and function in a way like what is observed in the ptprz1-/- zebrafish. The same inhibitor had no effect in the function of the adult zebrafish heart, suggesting that PTPRZ1 is not important for the adult heart function, in line with data from the human cell atlas showing very low to negligible PTPRZ1 expression in the adult human heart. However, in line with the animal models, Ptprz1 was expressed in many different cell types in the human fetal heart, such as valvar, fibroblast-like, cardiomyocytes, and endothelial cells. Collectively, these data suggest that PTPRZ1 regulates cardiac morphogenesis in a way that subsequently affects heart function and warrant further studies for the involvement of PTPRZ1 in idiopathic congenital cardiac pathologies.NEW & NOTEWORTHY Protein tyrosine phosphatase receptor ζ1 (PTPRZ1) is expressed in fetal but not adult heart and seems to affect heart development. In both mouse and zebrafish animal models, loss of PTPRZ1 results in dilated left ventricle cavity, decreased ejection fraction, and fraction shortening, with no signs of cardiac hypertrophy. PTPRZ1 also seems to be involved in atrioventricular canal specification, outflow tract morphogenesis, and heart angiogenesis. These results suggest that PTPRZ1 plays a role in heart development and support the hypothesis that it may be involved in congenital cardiac pathologies.


Assuntos
Coração/embriologia , Miocárdio/metabolismo , Organogênese , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas de Peixe-Zebra/genética , Animais , Deleção de Genes , Camundongos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
FASEB J ; 35(3): e21425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566443

RESUMO

Histamine-induced vascular leakage is a core process of allergic pathologies, including anaphylaxis. Here, we show that glycolysis is integral to histamine-induced endothelial barrier disruption and hyperpermeability. Histamine rapidly enhanced glycolysis in endothelial cells via a pathway that involved histamine receptor 1 and phospholipase C beta signaling. Consistently, partial inhibition of glycolysis with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) prevented histamine-induced hyperpermeability in human microvascular endothelial cells, by abolishing the histamine-induced actomyosin contraction, focal adherens junction formation, and endothelial barrier disruption. Pharmacologic blockade of glycolysis with 3PO in mice reduced histamine-induced vascular hyperpermeability, prevented vascular leakage in passive cutaneous anaphylaxis and protected from systemic anaphylaxis. In conclusion, we elucidated the role of glycolysis in histamine-induced disruption of endothelial barrier integrity. Our data thereby point to endothelial glycolysis as a novel therapeutic target for human pathologies related to excessive vascular leakage, such as systemic anaphylaxis.


Assuntos
Permeabilidade Capilar/fisiologia , Células Endoteliais/efeitos dos fármacos , Glicólise/fisiologia , Histamina/farmacologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Anafilaxia/metabolismo , Anafilaxia/patologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Camundongos , Fosfolipase C beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Bioorg Med Chem ; 67: 116805, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635929

RESUMO

Angiogenesis inhibitors are a critical pharmacological tool for the treatment of solid tumors. Suppressing vascular permeability leads to inhibition of tumor growth, invasion, and metastatic potential by blocking the supply of oxygen and nutrients. Disruption of the vascular endothelial growth factor (VEGF) signaling pathway is a validated target for the design of antiangiogenic agents. Several VEGFR2 inhibitors have been clinically approved over the past years. Structural analysis of these clinical VEGFR2 inhibitors highlighted key functional group overlap with the benzothiadiazine core contained in a library of in-house compounds. Herein we ascribe anti-angiogenic activity to a series of chlorinated benzothiadiazines. Selected compounds show significant activity to completely ameliorate VEGF-induced endothelial cell proliferation by suppression of VEGFR2 phosphorylation. The scaffold is devoid of activity to inhibit carbonic anhydrases and generally lacks cytotoxicity across a range of cancer and non-malignant cell lines. Assay of activity at 468 kinases shows remarkable selectivity with only four kinases inhibited > 65% at 10 µM concentration, and with significant activity to inhibit TNK2/ACK1 and PKRD2 by > 90%. All four identified kinase targets are known modulators of angiogenesis, thus highlighting compound 17b as a novel angiogenesis inhibitor for further development.


Assuntos
Benzotiadiazinas , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Benzotiadiazinas/metabolismo , Benzotiadiazinas/farmacologia , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neovascularização Patológica/tratamento farmacológico , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
8.
Angiogenesis ; 23(4): 621-636, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681389

RESUMO

Pleiotrophin (PTN) has a moderate stimulatory effect on endothelial cell migration through ανß3 integrin, while it decreases the stimulatory effect of vascular endothelial growth factor A (VEGFA) and inhibits cell migration in the absence of ανß3 through unknown mechanism(s). In the present work, by using a multitude of experimental approaches, we show that PTN binds to VEGF receptor type 2 (VEGFR2) with a KD of 11.6 nM. Molecular dynamics approach suggests that PTN binds to the same VEGFR2 region with VEGFA through its N-terminal domain. PTN inhibits phosphorylation of VEGFR2 at Tyr1175 and still stimulates endothelial cell migration in the presence of a selective VEGFR2 tyrosine kinase inhibitor. VEGFR2 downregulation by siRNA or an anti-VEGFR2 antibody that binds to the ligand-binding VEGFR2 domain also induce endothelial cell migration, which is abolished by a function-blocking antibody against ανß3 or the peptide PTN112-136 that binds ανß3 and inhibits PTN binding. In cells that do not express ανß3, PTN decreases both VEGFR2 Tyr1175 phosphorylation and cell migration in a VEGFR2-dependent manner. Collectively, our data identify VEGFR2 as a novel PTN receptor involved in the regulation of cell migration by PTN and contribute to the elucidation of the mechanism of activation of endothelial cell migration through the interplay between VEGFR2 and ανß3.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Citocinas/metabolismo , Integrina alfaVbeta3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas de Transporte/química , Linhagem Celular Tumoral , Citocinas/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Modelos Biológicos , Simulação de Dinâmica Molecular , Neovascularização Fisiológica , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Domínios Proteicos , Ratos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979394

RESUMO

: Metastasis is considered a major burden in cancer, being responsible for more than 90% of cancer-related deaths. Tumor angiogenesis is one of the main processes that lead to tumor metastasis. Penfluridol is a classic and commonly used antipsychotic drug, which has a great ability to cross the blood-brain barrier. Recent studies have revealed that penfluridol has significant anti-cancer activity in diverse tumors, such as metastatic breast cancer and glioblastoma. Here, we aim to identify the effect of low doses of penfluridol on tumor microenvironment and compare it with its effect on tumor cells. Although low concentration of penfluridol was not toxic for endothelial cells, it blocked angiogenesis in vitro and in vivo. In vitro, penfluridol inhibited VEGF-induced primary endothelial cell migration and tube formation, and in vivo, it blocked VEGF- and FGF-induced angiogenesis in the matrigel plug assay. VEGF-induced VEGFR2 phosphorylation and the downstream p38 and ERK signaling pathways were not affected in endothelial cells, although VEGF-induced Src and Akt activation were abrogated by penfluridol treatment. When cancer cells were treated with the same low concentration of penfluridol, basal Src activation levels were mildly impaired, thus impacting their cell migration and wound healing efficiency. The potential of cancer-induced paracrine effect on endothelial cells was explored, although that did not seem to be a player for angiogenesis. Overall, our data demonstrates that low penfluridol levels, similar to the ones clinically used for anti-psychotic conditions, suppress angiogenic efficiency in the tumor microenvironment.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/metabolismo , Penfluridol/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/uso terapêutico , Animais , Antipsicóticos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno , Combinação de Medicamentos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Laminina , Camundongos , Camundongos Endogâmicos C57BL , Penfluridol/uso terapêutico , Proteoglicanas , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Angiogenesis ; 21(1): 1-14, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29110215

RESUMO

Commensal microbiota inhabit all the mucosal surfaces of the human body. It plays significant roles during homeostatic conditions, and perturbations in numbers and/or products are associated with several pathological disorders. Angiogenesis, the process of new vessel formation, promotes embryonic development and critically modulates several biological processes during adulthood. Indeed, deregulated angiogenesis can induce or augment several pathological conditions. Accumulating evidence has implicated the angiogenic process in various microbiota-associated human diseases. Herein, we critically review diseases that are regulated by microbiota and are affected by angiogenesis, aiming to provide a broad understanding of how angiogenesis is involved and how microbiota regulate angiogenesis in microbiota-associated human conditions.


Assuntos
Microbiota , Neoplasias , Neovascularização Patológica , Gastrite/microbiologia , Gastrite/patologia , Humanos , Inflamação/microbiologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Neoplasias/irrigação sanguínea , Neoplasias/microbiologia , Neoplasias/patologia , Neovascularização Patológica/microbiologia , Neovascularização Patológica/patologia
11.
Bioorg Med Chem Lett ; 28(23-24): 3652-3657, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389290

RESUMO

Several recent reports have highlighted the feasibility of the use of penfluridol, a well-known antipsychotic agent, as a chemotherapeutic agent. In vivo experiments have confirmed the cytotoxic activity of penfluridol in triple-negative breast cancer model, lung cancer model, and further studies have been proposed to assess its anticancer activity and viability for the treatment of glioblastomas. However, penfluridol anticancer activity was observed at a dosage significantly higher than that administered in antipsychotic therapy, thus raising the concern for the potential onset of CNS side effects in patients undergoing intensive pharmacological treatment. In this study, we evaluate the potential CNS toxicity of penfluridol side by side with a set of analogs.


Assuntos
Antineoplásicos/química , Penfluridol/análogos & derivados , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antipsicóticos/química , Antipsicóticos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Penfluridol/metabolismo , Penfluridol/farmacologia , Penfluridol/uso terapêutico , Ligação Proteica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
12.
PLoS Pathog ; 11(12): e1005293, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26679537

RESUMO

Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS). However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9-/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9-/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/imunologia , Candidíase/imunologia , Infecções do Sistema Nervoso Central/imunologia , Síndromes de Imunodeficiência/imunologia , Infiltração de Neutrófilos/imunologia , Animais , Western Blotting , Proteínas Adaptadoras de Sinalização CARD/deficiência , Feminino , Citometria de Fluxo , Humanos , Síndromes de Imunodeficiência/microbiologia , Camundongos , Camundongos Knockout
13.
FASEB J ; 29(3): 1056-68, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25466898

RESUMO

Multiple human malignancies rely on C-X-C motif chemokine receptor type 4 (CXCR4) and its ligand, SDF-1/CXCL12 (stroma cell-derived factor 1/C-X-C motif chemokine 12), to metastasize. CXCR4 inhibitors promote the mobilization of bone marrow stem cells, limiting their clinical application for metastasis prevention. We investigated the CXCR4-initiated signaling circuitry to identify new potential therapeutic targets. We used HeLa human cancer cells expressing high levels of CXCR4 endogenously. We found that CXCL12 promotes their migration in Boyden chamber assays and single cell tracking. CXCL12 activated mTOR (mechanistic target of rapamycin) potently in a pertussis-sensitive fashion. Inhibition of mTOR complex 1 (mTORC1) by rapamycin [drug concentration causing 50% inhibition (IC50) = 5 nM] and mTORC1/mTORC2 by Torin2 (IC50 = 6 nM), or by knocking down key mTORC1/2 components, Raptor and Rictor, respectively, decreased directional cell migration toward CXCL12. We developed a CXCR4-mediated spontaneous metastasis model by implanting HeLa cells in the tongue of SCID-NOD mice, in which 80% of the animals develop lymph node metastasis. It is surprising that mTORC1 disruption by Raptor knockdown was sufficient to reduce tumor growth by 60% and spontaneous metastasis by 72%, which were nearly abolished by rapamycin. In contrast, disrupting mTORC2 had no effect in tumor growth or metastasis compared with control short hairpin RNAs. These data suggest that mTORC1 may represent a suitable therapeutic target in human malignancies using CXCR4 for their metastatic spread. .


Assuntos
Movimento Celular , Quimiocina CXCL12/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Receptores CXCR4/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/secundário , Animais , Apoptose , Western Blotting , Proliferação de Células , Feminino , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Metástase Linfática , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo
14.
J Biol Chem ; 288(17): 12232-43, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23467409

RESUMO

G protein-coupled receptors (GPCRs) linked to both members of the Gα12 family of heterotrimeric G proteins α subunits, Gα12 and Gα13, regulate the activation of Rho GTPases, thereby contributing to many key biological processes. Multiple Rho GEFs have been proposed to link Gα12/13 GPCRs to Rho activation, including PDZ-RhoGEF (PRG), leukemia-associated Rho GEF (LARG), p115-RhoGEF (p115), lymphoid blast crisis (Lbc), and Dbl. PRG, LARG, and p115 share the presence of a regulator of G protein signaling homology (RGS) domain. There is limited information on the biological roles of this RGS-containing family of RhoGEFs in vivo. p115-deficient mice are viable with some defects in the immune system and gastrointestinal motor dysfunctions, whereas in an initial study we showed that mice deficient for Larg are viable and resistant to salt-induced hypertension. Here, we generated knock-out mice for Prg and observed that these mice do not display any overt phenotype. However, deficiency in Prg and Larg leads to complex developmental defects and early embryonic lethality. Signaling from Gα11/q-linked GPCRs to Rho was not impaired in mouse embryonic fibroblasts defective in all three RGS-containing RhoGEFs. However, a combined lack of Prg, Larg, and p115 expression abolished signaling through Gα12/13 to Rho and thrombin-induced cell proliferation, directional migration, and nuclear signaling through JNK and p38. These findings provide evidence of an essential role for the RGS-containing RhoGEF family in signaling to Rho by Gα12/13-coupled GPCRs, which may likely play a critical role during embryonic development.


Assuntos
Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Trombina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células , Fibroblastos/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Camundongos Knockout , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Trombina/genética , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/genética
15.
Blood ; 120(2): 489-98, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22649102

RESUMO

Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase Cγ1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis.


Assuntos
Diacilglicerol Colinofosfotransferase/metabolismo , Fosfatidilinositóis/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/genética , Humanos , Mutação , Neovascularização Fisiológica/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
ACS Pharmacol Transl Sci ; 7(1): 120-136, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230276

RESUMO

Triple-negative breast cancer (TNBC) poses significant challenges due to its aggressive nature and limited treatment options. In this study, we investigated the impact of urea-based compounds on TNBC cells to uncover their mechanisms of action and therapeutic potential. Notably, polypharmacology urea analogues were found to work via p53-related pathways, and their cytotoxic effects were amplified by the modulation of oxidative phosphorylation pathways in the mitochondria of cancer cells. Specifically, compound 1 demonstrated an uncoupling effect on adenosine triphosphate (ATP) synthesis, leading to a time- and concentration-dependent shift toward glycolysis-based ATP production in MDA-MB-231 cells. At the same time, no significant changes in ATP synthesis were observed in noncancerous MCF10A cells. Moreover, the unique combination of mitochondrial- and p53-related effects leads to a higher cytotoxicity of urea analogues in cancer cells. Notably, the majority of tested clinical agents, but sorafenib, showed significantly higher toxicity in MCF10A cells. To test our hypothesis of sensitizing cancer cells to the treatment via modulation of mitochondrial health, we explored the combinatorial effects of urea-based analogues with established chemotherapeutic agents commonly used in TNBC treatment. Synergistic effects were evident in most tested combinations in TNBC cell lines, while noncancerous MCF10A cells exhibited higher resistance to these combination treatments. The combination of compound 1 with SN38 displayed nearly 60-fold selectivity toward TNBC cells over MCF10A cells. Encouragingly, combinations involving compound 1 restored the sensitivity of TNBC cells to cisplatin. In conclusion, our study provides valuable insights into the mechanisms of action of urea-based compounds in TNBC cells. The observed induction of mitochondrial membrane depolarization, inhibition of superoxide dismutase activity, disruption of ATP synthesis, and cell-line-specific responses contribute to their cytotoxic effects. Additionally, we demonstrated the synergistic potential of compound 1 to enhance the efficacy of existing TNBC treatments. However, the therapeutic potential and underlying molecular mechanisms of urea-based analogues in TNBC cell lines require further exploration.

18.
J Control Release ; 361: 212-235, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517543

RESUMO

The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Neoplasias/patologia , Nanopartículas/química , Permeabilidade , Nanomedicina , Microambiente Tumoral
19.
J Vis Exp ; (197)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37590510

RESUMO

The lymphatic system participates in the regulation of immune surveillance, lipid absorption, and tissue fluid balance. The isolation of murine lymphatic endothelial cells is an important process for lymphatic research, as it allows the performance of in vitro and biochemical experiments on the isolated cells. Moreover, the development of Cre-lox technology has enabled the tissue-specific deficiency of genes that cannot be globally targeted, leading to the precise determination of their role in the studied tissues. The dissection of the role of certain genes in lymphatic physiology and pathophysiology requires the use of lymphatic-specific promoters, and thus, the experimental verification of the expression levels of the targeted genes. Methods for efficient isolation of lymphatic endothelial cells from wild-type or transgenic mice enable the use of ex vivo and in vitro assays to study the mechanisms regulating the lymphatic functions and the identification of the expression levels of the studied proteins. We have developed, standardized and present a protocol for the efficient isolation of murine dermal lymphatic endothelial cells (DLECs) via magnetic bead purification based on LYVE-1 expression. The protocol outlined aims to equip researchers with a tool to further understand and elucidate important players of lymphatic endothelial cell functions, especially in facilities where fluorescence-activated cell sorting equipment is not available.


Assuntos
Células Endoteliais , Vasos Linfáticos , Camundongos , Animais , Camundongos Transgênicos , Dissecação , Líquido Extracelular
20.
Pharmaceutics ; 14(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36559106

RESUMO

In the generational evolution of nano-based drug delivery carriers, active targeting has been a major milestone for improved and selective drug accumulation in tissues and cell types beyond the existing passive targeting capabilities. Among the various active targeting moieties, chlorotoxin, a peptide extracted from scorpions, demonstrated promising tumor cell accumulation and selection. With lung cancer being among the leading diagnoses of cancer-related deaths in both men and women, novel therapeutic methodologies utilizing nanotechnology for drug delivery emerged. Given chlorotoxin's promising biological activity, we explore its potential against lung cancer and its utilization for active targeting against this cancer's tumor cells. Our analysis indicates that despite the extensive chlorotoxin's research against glioblastoma, lung cancer research with the molecule has been limited, despite some promising early results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa