Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 15(3): 894-9, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24524417

RESUMO

Immobilization of proteins onto polymer surfaces usually requires specific reactive functional groups. Here, we show an easy one-step method to conjugate protein covalently onto almost any polymer surface, including low protein-binding poly(ethylene glycol) (PEG), without the requirement for the presence of specific functional groups. Several types of proteins, including alkaline phosphatase, bovine serum albumin, and polyclonal antibodies, were photoimmobilized onto a PEG-coated polymer surface using a water-soluble benzophenone as photosensitizer. Protein functionality after immobilization was verified for both enzymes and antibodies, and their presence on the surface was confirmed by X-ray photoelectron spectroscopy (XPS) and confocal fluorescence microscopy. Conjugation of capture antibody onto the PEG coating was employed for a simplified ELISA protocol without the need for blocking uncoated surface areas, showing ng/mL sensitivity to a cytokine antigen target. Moreover, spatially patterned attachment of fluorescently labeled protein onto the low-binding PEG-coated surface was achieved with a projection lithography system that enabled the creation of micrometer-sized protein features.


Assuntos
Proteínas Imobilizadas/química , Polietilenoglicóis/química , Polímeros/química , Soroalbumina Bovina/química , Fosfatase Alcalina/química , Animais , Anticorpos/química , Bovinos , Espectroscopia Fotoeletrônica , Propriedades de Superfície
2.
Biomicrofluidics ; 8(6): 064127, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25587375

RESUMO

Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15 µm using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa