Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nucleic Acids Res ; 52(D1): D672-D678, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941124

RESUMO

The Reactome Knowledgebase (https://reactome.org), an Elixir and GCBR core biological data resource, provides manually curated molecular details of a broad range of normal and disease-related biological processes. Processes are annotated as an ordered network of molecular transformations in a single consistent data model. Reactome thus functions both as a digital archive of manually curated human biological processes and as a tool for discovering functional relationships in data such as gene expression profiles or somatic mutation catalogs from tumor cells. Here we review progress towards annotation of the entire human proteome, targeted annotation of disease-causing genetic variants of proteins and of small-molecule drugs in a pathway context, and towards supporting explicit annotation of cell- and tissue-specific pathways. Finally, we briefly discuss issues involved in making Reactome more fully interoperable with other related resources such as the Gene Ontology and maintaining the resulting community resource network.


Assuntos
Bases de Conhecimento , Redes e Vias Metabólicas , Transdução de Sinais , Humanos , Redes e Vias Metabólicas/genética , Proteoma/genética
2.
Nucleic Acids Res ; 50(D1): D687-D692, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788843

RESUMO

The Reactome Knowledgebase (https://reactome.org), an Elixir core resource, provides manually curated molecular details across a broad range of physiological and pathological biological processes in humans, including both hereditary and acquired disease processes. The processes are annotated as an ordered network of molecular transformations in a single consistent data model. Reactome thus functions both as a digital archive of manually curated human biological processes and as a tool for discovering functional relationships in data such as gene expression profiles or somatic mutation catalogs from tumor cells. Recent curation work has expanded our annotations of normal and disease-associated signaling processes and of the drugs that target them, in particular infections caused by the SARS-CoV-1 and SARS-CoV-2 coronaviruses and the host response to infection. New tools support better simultaneous analysis of high-throughput data from multiple sources and the placement of understudied ('dark') proteins from analyzed datasets in the context of Reactome's manually curated pathways.


Assuntos
Antivirais/farmacologia , Bases de Conhecimento , Proteínas/metabolismo , COVID-19/metabolismo , Curadoria de Dados , Genoma Humano , Interações Hospedeiro-Patógeno , Humanos , Proteínas/genética , Transdução de Sinais , Software
3.
Nucleic Acids Res ; 48(D1): D498-D503, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691815

RESUMO

The Reactome Knowledgebase (https://reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations in a single consistent data model, an extended version of a classic metabolic map. Reactome functions both as an archive of biological processes and as a tool for discovering functional relationships in data such as gene expression profiles or somatic mutation catalogs from tumor cells. To extend our ability to annotate human disease processes, we have implemented a new drug class and have used it initially to annotate drugs relevant to cardiovascular disease. Our annotation model depends on external domain experts to identify new areas for annotation and to review new content. New web pages facilitate recruitment of community experts and allow those who have contributed to Reactome to identify their contributions and link them to their ORCID records. To improve visualization of our content, we have implemented a new tool to automatically lay out the components of individual reactions with multiple options for downloading the reaction diagrams and associated data, and a new display of our event hierarchy that will facilitate visual interpretation of pathway analysis results.


Assuntos
Bases de Dados de Compostos Químicos , Bases de Dados de Produtos Farmacêuticos , Bases de Conhecimento , Software , Genoma Humano , Humanos , Redes e Vias Metabólicas , Mapas de Interação de Proteínas , Transdução de Sinais
4.
Nucleic Acids Res ; 46(D1): D649-D655, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29145629

RESUMO

The Reactome Knowledgebase (https://reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism, and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression profiles or somatic mutation catalogues from tumor cells. To support the continued brisk growth in the size and complexity of Reactome, we have implemented a graph database, improved performance of data analysis tools, and designed new data structures and strategies to boost diagram viewer performance. To make our website more accessible to human users, we have improved pathway display and navigation by implementing interactive Enhanced High Level Diagrams (EHLDs) with an associated icon library, and subpathway highlighting and zooming, in a simplified and reorganized web site with adaptive design. To encourage re-use of our content, we have enabled export of pathway diagrams as 'PowerPoint' files.


Assuntos
Bases de Conhecimento , Redes e Vias Metabólicas , Gráficos por Computador , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Humanos , Internet , Anotação de Sequência Molecular , Transdução de Sinais , Interface Usuário-Computador
5.
RNA ; 22(5): 667-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26917558

RESUMO

MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual).


Assuntos
Guias como Assunto , MicroRNAs/genética , Animais , Inativação Gênica , Humanos , Camundongos
6.
Bioinformatics ; 33(21): 3461-3467, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29077811

RESUMO

MOTIVATION: Reactome is a free, open-source, open-data, curated and peer-reviewed knowledge base of biomolecular pathways. Pathways are arranged in a hierarchical structure that largely corresponds to the GO biological process hierarchy, allowing the user to navigate from high level concepts like immune system to detailed pathway diagrams showing biomolecular events like membrane transport or phosphorylation. Here, we present new developments in the Reactome visualization system that facilitate navigation through the pathway hierarchy and enable efficient reuse of Reactome visualizations for users' own research presentations and publications. RESULTS: For the higher levels of the hierarchy, Reactome now provides scalable, interactive textbook-style diagrams in SVG format, which are also freely downloadable and editable. Repeated diagram elements like 'mitochondrion' or 'receptor' are available as a library of graphic elements. Detailed lower-level diagrams are now downloadable in editable PPTX format as sets of interconnected objects. AVAILABILITY AND IMPLEMENTATION: http://reactome.org. CONTACT: fabregat@ebi.ac.uk or hhe@ebi.ac.uk.


Assuntos
Fenômenos Biológicos , Bases de Conhecimento , Interface Usuário-Computador , Gráficos por Computador , Ontologia Genética , Internet , Bibliotecas , Transdução de Sinais
7.
Nucleic Acids Res ; 44(D1): D481-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26656494

RESUMO

The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently.


Assuntos
Bases de Dados de Compostos Químicos , Redes e Vias Metabólicas , Expressão Gênica , Humanos , Bases de Conhecimento , Proteínas/metabolismo , Transdução de Sinais , Software
8.
Nucleic Acids Res ; 42(Database issue): D472-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24243840

RESUMO

Reactome (http://www.reactome.org) is a manually curated open-source open-data resource of human pathways and reactions. The current version 46 describes 7088 human proteins (34% of the predicted human proteome), participating in 6744 reactions based on data extracted from 15 107 research publications with PubMed links. The Reactome Web site and analysis tool set have been completely redesigned to increase speed, flexibility and user friendliness. The data model has been extended to support annotation of disease processes due to infectious agents and to mutation.


Assuntos
Bases de Dados de Proteínas , Proteínas/metabolismo , Doença , Humanos , Internet , Bases de Conhecimento , Redes e Vias Metabólicas
9.
Database (Oxford) ; 20242024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713862

RESUMO

Germline and somatic mutations can give rise to proteins with altered activity, including both gain and loss-of-function. The effects of these variants can be captured in disease-specific reactions and pathways that highlight the resulting changes to normal biology. A disease reaction is defined as an aberrant reaction in which a variant protein participates. A disease pathway is defined as a pathway that contains a disease reaction. Annotation of disease variants as participants of disease reactions and disease pathways can provide a standardized overview of molecular phenotypes of pathogenic variants that is amenable to computational mining and mathematical modeling. Reactome (https://reactome.org/), an open source, manually curated, peer-reviewed database of human biological pathways, in addition to providing annotations for >11 000 unique human proteins in the context of ∼15 000 wild-type reactions within more than 2000 wild-type pathways, also provides annotations for >4000 disease variants of close to 400 genes as participants of ∼800 disease reactions in the context of ∼400 disease pathways. Functional annotation of disease variants proceeds from normal gene functions, described in wild-type reactions and pathways, through disease variants whose divergence from normal molecular behaviors has been experimentally verified, to extrapolation from molecular phenotypes of characterized variants to variants of unknown significance using criteria of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Reactome's data model enables mapping of disease variant datasets to specific disease reactions within disease pathways, providing a platform to infer pathway output impacts of numerous human disease variants and model organism orthologs, complementing computational predictions of variant pathogenicity. Database URL: https://reactome.org/.


Assuntos
Anotação de Sequência Molecular , Fenótipo , Humanos , Bases de Dados Genéticas , Doença/genética
10.
J Clin Invest ; 134(9)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530366

RESUMO

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


Assuntos
Dano ao DNA , Vesículas Extracelulares , Proteínas de Fusão Oncogênica , Proteína Proto-Oncogênica c-fli-1 , Proteína EWS de Ligação a RNA , Regulador Transcricional ERG , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Masculino , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/imunologia , Linhagem Celular Tumoral , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Camundongos , Animais , Heterocromatina/metabolismo , Heterocromatina/genética
11.
Curr Protoc ; 3(4): e722, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37053306

RESUMO

Pathway databases provide descriptions of the roles of proteins, nucleic acids, lipids, carbohydrates, and other molecular entities within their biological cellular contexts. Pathway-centric views of these roles may allow for the discovery of unexpected functional relationships in data such as gene expression profiles and somatic mutation catalogues from tumor cells. For this reason, there is a high demand for high-quality pathway databases and their associated tools. The Reactome project (a collaboration between the Ontario Institute for Cancer Research, New York University Langone Health, the European Bioinformatics Institute, and Oregon Health & Science University) is one such pathway database. Reactome collects detailed information on biological pathways and processes in humans from the primary literature. Reactome content is manually curated, expert-authored, and peer-reviewed and spans the gamut from simple intermediate metabolism to signaling pathways and complex cellular events. This information is supplemented with likely orthologous molecular reactions in mouse, rat, zebrafish, worm, and other model organisms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Browsing a Reactome pathway Basic Protocol 2: Exploring Reactome annotations of disease and drugs Basic Protocol 3: Finding the pathways involving a gene or protein Alternate Protocol 1: Finding the pathways involving a gene or protein using UniProtKB (SwissProt), Ensembl, or Entrez gene identifier Alternate Protocol 2: Using advanced search Basic Protocol 4: Using the Reactome pathway analysis tool to identify statistically overrepresented pathways Basic Protocol 5: Using the Reactome pathway analysis tool to overlay expression data onto Reactome pathway diagrams Basic Protocol 6: Comparing inferred model organism and human pathways using the Species Comparison tool Basic Protocol 7: Comparing tissue-specific expression using the Tissue Distribution tool.


Assuntos
Redes e Vias Metabólicas , Peixe-Zebra , Humanos , Animais , Camundongos , Ratos , Peixe-Zebra/metabolismo , Bases de Dados de Proteínas , Proteínas/metabolismo , Transdução de Sinais
12.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986970

RESUMO

Appreciating the rapid advancement and ubiquity of generative AI, particularly ChatGPT, a chatbot using large language models like GPT, we endeavour to explore the potential application of ChatGPT in the data collection and annotation stages within the Reactome curation process. This exploration aimed to create an automated or semi-automated framework to mitigate the extensive manual effort traditionally required for gathering and annotating information pertaining to biological pathways, adopting a Reactome "reaction-centric" approach. In this pilot study, we used ChatGPT/GPT4 to address gaps in the pathway annotation and enrichment in parallel with the conventional manual curation process. This approach facilitated a comparative analysis, where we assessed the outputs generated by ChatGPT against manually extracted information. The primary objective of this comparison was to ascertain the efficiency of integrating ChatGPT or other large language models into the Reactome curation workflow and helping plan our annotation pipeline, ultimately improving our protein-to-pathway association in a reliable and automated or semi-automated way. In the process, we identified some promising capabilities and inherent challenges associated with the utilisation of ChatGPT/GPT4 in general and also specifically in the context of Reactome curation processes. We describe approaches and tools for refining the output given by ChatGPT/GPT4 that aid in generating more accurate and detailed output.

13.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37904913

RESUMO

Disease variant annotation in the context of biological reactions and pathways can provide a standardized overview of molecular phenotypes of pathogenic mutations that is amenable to computational mining and mathematical modeling. Reactome, an open source, manually curated, peer-reviewed database of human biological pathways, provides annotations for over 4000 disease variants of close to 400 genes in the context of ∼800 disease reactions constituting ∼400 disease pathways. Functional annotation of disease variants proceeds from normal gene functions, through disease variants whose divergence from normal molecular behaviors has been experimentally verified, to extrapolation from molecular phenotypes of characterized variants to variants of unknown significance using criteria of the American College of Medical Genetics and Genomics (ACMG). Reactome's pathway-based, reaction-specific disease variant dataset and data model provide a platform to infer pathway output impacts of numerous human disease variants and model organism orthologs, complementing computational predictions of variant pathogenicity.

14.
Am J Med Genet B Neuropsychiatr Genet ; 159B(2): 210-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213695

RESUMO

The overwhelming majority of Rett syndrome cases are caused by mutations in the gene MECP2. MECP2 has two isoforms, termed MECP2_e1 and MECP2_e2, which differ in their N-terminal amino acid sequences. A growing body of evidence has indicated that MECP2_e1 may be the etiologically relevant isoform in Rett Syndrome based on its expression profile in the brain and because, strikingly, no mutations have been discovered that affect MECP2_e2 exclusively. In this study we sought to characterize four classical Rett patients with mutations that putatively affect only the MECP2_e1 isoform. Our hypothesis was that the classical Rett phenotype seen here is the result of disrupted MECP2_e1 expression, but with MECP2_e2 expression unaltered. We used quantitative reverse transcriptase PCR to assay mRNA expression for each isoform independently, and used cytospinning methods to assay total MECP2 in peripheral blood lymphocytes (PBL). In the two Rett patients with identical 11 bp deletions within the coding portion of exon 1, MECP2_e2 levels were unaffected, whilst a significant reduction of MECP2_e1 levels was detected. In two Rett patients harboring mutations in the exon 1 start codon, MECP2_e1 and MECP2_e2 mRNA amounts were unaffected. In summary, we have shown that patients with exon 1 mutations transcribe normal levels of MECP2_e2 mRNA, and most PBL are positive for MeCP2 protein, despite them theoretically being unable to produce the MECP2_e1 isoform, and yet still exhibit the classical RTT phenotype. Altogether, our work further supports our hypothesis that MECP2_e1 is the predominant isoform involved in the neuropathology of Rett syndrome.


Assuntos
Éxons/genética , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Síndrome de Rett/genética , Transcrição Gênica , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Fenótipo , Prognóstico , Isoformas de Proteínas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inativação do Cromossomo X , Adulto Jovem
15.
Database (Oxford) ; 20222022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35348650

RESUMO

ABSTRACT: Reactome is a database of human biological pathways manually curated from the primary literature and peer-reviewed by experts. To evaluate the utility of Reactome pathways for predicting functional consequences of genetic perturbations, we compared predictions of perturbation effects based on Reactome pathways against published empirical observations. Ten cancer-relevant Reactome pathways, representing diverse biological processes such as signal transduction, cell division, DNA repair and transcriptional regulation, were selected for testing. For each pathway, root input nodes and key pathway outputs were defined. We then used pathway-diagram-derived logic graphs to predict, either by inspection by biocurators or using a novel algorithm MP-BioPath, the effects of bidirectional perturbations (upregulation/activation or downregulation/inhibition) of single root inputs on the status of key outputs. These predictions were then compared to published empirical tests. In total, 4968 test cases were analyzed across 10 pathways, of which 847 were supported by published empirical findings. Out of the 847 test cases, curators' predictions agreed with the experimental evidence in 670 and disagreed in 177 cases, resulting in ∼81% overall accuracy. MP-BioPath predictions agreed with experimental evidence for 625 and disagreed for 222 test cases, resulting in ∼75% overall accuracy. The expected accuracy of random guessing was 33%. Per-pathway accuracy did not correlate with the number of pathway edges nor the number of pathway nodes but varied across pathways, ranging from 56% (curator)/44% (MP-BioPath) for 'Mitotic G1 phase and G1/S transition' to 100% (curator)/94% (MP-BioPath) for 'RAF/MAP kinase cascade'. This study highlights the potential of pathway databases such as Reactome in modeling genetic perturbations, promoting standardization of experimental pathway activity readout and supporting hypothesis-driven research by revealing relationships between pathway inputs and outputs that have not yet been directly experimentally tested. DATABASE URL: www.reactome.org.


Assuntos
Fenômenos Biológicos , Bases de Conhecimento , Algoritmos , Bases de Dados Factuais , Humanos , Transdução de Sinais
16.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802127

RESUMO

Reactome is a manually curated, open-source, open-data knowledge base of biomolecular pathways. Reactome has always provided clear credit attribution for authors, curators and reviewers through fine-grained annotation of all three roles at the reaction and pathway level. These data are visible in the web interface and provided through the various data download formats. To enhance visibility and credit attribution for the work of authors, curators and reviewers, and to provide additional opportunities for Reactome community engagement, we have implemented key changes to Reactome: contributor names are now fully searchable in the web interface, and contributors can 'claim' their contributions to their ORCID profile with a few clicks. In addition, we are reaching out to domain experts to request their help in reviewing and editing Reactome pathways through a new 'Contribution' section, highlighting pathways which are awaiting community review. Database URL: https://reactome.org.


Assuntos
Curadoria de Dados , Transdução de Sinais , Interface Usuário-Computador
17.
Cancer Genet Cytogenet ; 179(2): 102-11, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18036396

RESUMO

Gain of the short arm of chromosome 6, usually through isochromosome 6p formation, is present in approximately 50% of retinoblastoma tumors. The minimal region of gain maps to chromosome band 6p22. Two genes, DEK and E2F3, are implicated as candidate oncogenes. However, chromosomal translocations have been overlooked as a potential mechanism of activation of oncogenes at 6p22 in retinoblastoma. Here, we report combined spectral karyotyping), 4',6-diamidino-2-phenylindole banding, mBAND, and locus-specific fluorescence in situ hybridization analyses of four retinoblastoma cell lines, RB1021, RB247c, RB383, and Y79. In RB1021 and RB247c, 6p undergoes structural rearrangements involving a common translocation breakpoint at 6p22. These data imply that 6p translocations may represent another mechanism of activation of 6p oncogene(s) in a subset of retinoblastomas, besides the copy number increase. In addition to 6p22, other recurrent translocation breakpoints identified in this study are 4p16, 11p15, 17q21.3, and 20q13. Common regions of gain map to chromosomal arms 1q, 2p, 6p, 17q, and 21q.


Assuntos
Linhagem Celular Tumoral , Cromossomos Humanos Par 6 , Neoplasias Oculares/genética , Retinoblastoma/genética , Translocação Genética , Aberrações Cromossômicas , Bandeamento Cromossômico , Quebra Cromossômica , Humanos , Hibridização in Situ Fluorescente , Cariotipagem Espectral
18.
Artigo em Inglês | MEDLINE | ID: mdl-27242035

RESUMO

Metastasis is the dissemination of a cancer/tumor from one organ to another, and it is the most dangerous stage during cancer progression, causing more than 90% of cancer deaths. Improving the understanding of the complicated cellular mechanisms underlying metastasis requires investigations of the signaling pathways. To this end, we developed a METastasis (MET) network visualization and curation tool to assist metastasis researchers retrieve network information of interest while browsing through the large volume of studies in PubMed. MET can recognize relations among genes, cancers, tissues and organs of metastasis mentioned in the literature through text-mining techniques, and then produce a visualization of all mined relations in a metastasis network. To facilitate the curation process, MET is developed as a browser extension that allows curators to review and edit concepts and relations related to metastasis directly in PubMed. PubMed users can also view the metastatic networks integrated from the large collection of research papers directly through MET. For the BioCreative 2015 interactive track (IAT), a curation task was proposed to curate metastatic networks among PubMed abstracts. Six curators participated in the proposed task and a post-IAT task, curating 963 unique metastatic relations from 174 PubMed abstracts using MET.Database URL: http://btm.tmu.edu.tw/metastasisway.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , PubMed , Software , Curadoria de Dados , Interface Usuário-Computador
19.
Artigo em Inglês | MEDLINE | ID: mdl-27589961

RESUMO

Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Processamento Eletrônico de Dados/métodos
20.
PLoS One ; 9(4): e91742, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699272

RESUMO

Mutations in MECP2 are responsible for the majority of Rett syndrome cases. MECP2 is a regulator of transcription, and has two isoforms, MECP2_e1 and MECP2_e2. There is accumulating evidence that MECP2_e1 is the etiologically relevant variant for Rett. In this study we aim to detect genes that are differentially transcribed in neuronal cells over-expressing either of these two MECP2 isoforms. The human neuroblastoma cell line SK-N-SH was stably infected by lentiviral vectors over-expressing MECP2_e1, MECP2_e2, or eGFP, and were then differentiated into neurons. The same lentiviral constructs were also used to infect mouse Mecp2 knockout (Mecp2(tm1.1Bird)) fibroblasts. RNA from these cells was used for microarray gene expression analysis. For the human neuronal cells, ∼ 800 genes showed >three-fold change in expression level with the MECP2_e1 construct, and ∼ 230 with MECP2_e2 (unpaired t-test, uncorrected p value <0.05). We used quantitative RT-PCR to verify microarray results for 41 of these genes. We found significant up-regulation of several genes resulting from over-expression of MECP2_e1 including SRPX2, NAV3, NPY1R, SYN3, and SEMA3D. DOCK8 was shown via microarray and qRT-PCR to be upregulated in both SK-N-SH cells and mouse fibroblasts. Both isoforms up-regulated GABRA2, KCNA1, FOXG1 and FOXP2. Down-regulation of expression in the presence of MECP2_e1 was seen with UNC5C and RPH3A. Understanding the biology of these differentially transcribed genes and their role in neurodevelopment may help us to understand the relative functions of the two MECP2 isoforms, and ultimately develop a better understanding of RTT etiology and determine the clinical relevance of isoform-specific mutations.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/fisiologia , Neuroblastoma/genética , Neurônios/metabolismo , Animais , Células Cultivadas , Fibroblastos/citologia , Humanos , Camundongos , Camundongos Knockout , Neuroblastoma/patologia , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa