Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 164(5): 999-1014, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26875865

RESUMO

Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation.


Assuntos
Fator de Transcrição GATA4/metabolismo , Proteínas de Homeodomínio/metabolismo , Miocárdio/citologia , Organogênese , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Cristalografia por Raios X , Embrião de Mamíferos/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Miocárdio/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
2.
Nature ; 563(7733): 701-704, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429614

RESUMO

Human pluripotent cell lines hold enormous promise for the development of cell-based therapies. Safety, however, is a crucial prerequisite condition for clinical applications. Numerous groups have attempted to eliminate potentially harmful cells through the use of suicide genes1, but none has quantitatively defined the safety level of transplant therapies. Here, using genome-engineering strategies, we demonstrate the protection of a suicide system from inactivation in dividing cells. We created a transcriptional link between the suicide gene herpes simplex virus thymidine kinase (HSV-TK) and a cell-division gene (CDK1); this combination is designated the safe-cell system. Furthermore, we used a mathematical model to quantify the safety level of the cell therapy as a function of the number of cells that is needed for the therapy and the type of genome editing that is performed. Even with the highly conservative estimates described here, we anticipate that our solution will rapidly accelerate the entry of cell-based medicine into the clinic.


Assuntos
Proteína Quinase CDC2/genética , Divisão Celular/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Genes Transgênicos Suicidas/genética , Segurança do Paciente , Animais , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/normas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Ganciclovir/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simplexvirus/enzimologia , Simplexvirus/genética , Timidina Quinase/genética , Timidina Quinase/metabolismo
3.
Nature ; 458(7239): 771-5, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19252477

RESUMO

Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors. However, such iPS cells contain a large number of viral vector integrations, any one of which could cause unpredictable genetic dysfunction. Whereas c-Myc is dispensable for reprogramming, complete elimination of the other exogenous factors is also desired because ectopic expression of either Oct4 (also known as Pou5f1) or Klf4 can induce dysplasia. Two transient transfection-reprogramming methods have been published to address this issue. However, the efficiency of both approaches is extremely low, and neither has been applied successfully to human cells so far. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc, Klf4, Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimaeric mice. When the single-vector reprogramming system was combined with a piggyBac transposon, we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models.


Assuntos
Reprogramação Celular/genética , Vetores Genéticos/genética , Células-Tronco Pluripotentes/citologia , Transfecção/métodos , Animais , Biomarcadores/análise , Linhagem Celular , Células Cultivadas , Fibroblastos/citologia , Perfilação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Pluripotentes/metabolismo , Transgenes/genética
4.
Nature ; 458(7239): 766-70, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19252478

RESUMO

Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.


Assuntos
Diferenciação Celular , Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Vetores Genéticos/genética , Células-Tronco Pluripotentes/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Elementos de DNA Transponíveis , Fibroblastos/virologia , Ordem dos Genes , Técnicas de Transferência de Genes , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Nus , Alinhamento de Sequência , Fatores de Transcrição/genética , Transgenes/genética
5.
J Vis Exp ; (120)2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28287531

RESUMO

Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by forced expression of defined transcription factors using different methods. Here, we produced iPS cells from mouse amniotic fluid cells, using a non-viral-based transposon system. All obtained iPS cell lines exhibited characteristics of pluripotent cells, including the ability to differentiate toward derivatives of all three germ layers in vitro and in vivo. This strategy opens up the possibility of using cells from diseased fetuses to develop new therapies for birth defects.


Assuntos
Líquido Amniótico/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Prenhez , Animais , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Feminino , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Gravidez
6.
Stem Cell Res ; 6(1): 70-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20934930

RESUMO

The future application of human embryonic stem cells (hESC) for therapeutic approaches requires the development of xeno-free culture conditions to prevent the potential transmission of animal pathogens or xenobiotic substances to hESC. An important component of the majority of hESC culture systems developed is the requirement for fibroblasts to serve as feeders. For this purpose, several studies have used human foreskin fibroblasts established under xeno-free conditions. In this study we report xeno-free establishment and maintenance of human embryonic fibroblasts (XHEF) and demonstrate their ability to support long-term self-renewal of hESC under xeno-free culture conditions, using a commercially available complete medium. Importantly, our culture conditions allow enzymatic passaging of hESC. In contrast, hESC cultured on human foreskin fibroblasts (XHFF) under the same conditions were poorly maintained and rapidly subject to differentiation. Our study clearly shows that the source of human fibroblasts is essential for long-term xeno-free hESC maintenance.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Meios de Cultura/metabolismo , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Xenobióticos/análise , Células Cultivadas , Meios de Cultura/análise , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Humanos
7.
Methods Mol Biol ; 767: 87-103, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21822869

RESUMO

Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) allows the derivation of -personalized stem cells. Transposon transgenesis is a novel and viable alternative to viral transduction methods for the delivery of reprogramming factors (Oct4, Sox2, Klf4, c-Myc) to somatic cells. Since transposons can be introduced as naked DNA using common plasmid transfection protocols, they provide a safer alternative to viral methods. piggyBac transposons are host-factor independent and integrate stably into the target genome, yet benefit from the unique characteristic of seamless removal mediated by transient expression of piggyBac transposase. Thus, piggyBac transposition provides an effective means to generate human, transgene-free iPSCs. The protocol describes the production of iPSCs from human embryonic fibroblasts, delivering reprogramming factors via plasmid transfection and piggyBac transposition.


Assuntos
Técnicas de Cultura de Células/métodos , Elementos de DNA Transponíveis/genética , Células-Tronco Pluripotentes/citologia , Transgenes/genética , Animais , Separação Celular , Reprogramação Celular , Células Clonais , Vetores Genéticos/genética , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Mutagênese Insercional/genética , Transfecção
8.
Mamm Genome ; 16(10): 775-83, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16261419

RESUMO

Penetrance of the complex of genes predisposing the nonobese diabetic (NOD) mouse to autoimmune diabetes is affected by the maternal environment. NOD.CBALs-Tyr(+)/Lt is an agouti-pigmented Chromosome 7 congenic stock of NOD/Lt mice produced as a resource for embryo transfer experiments to provide the necessary maternal factors and allow the easy identification of NOD (albino) embryo donor phenotype. CBcNO6/Lt, a recombinant congenic agouti stock already containing approximately 50% NOD genome, was used as the donor source of a wild-type CBA tyrosinase allele. When the incidence of diabetes was assessed after nine generations of backcrossing and one generation of sib-sib mating, significant reduction in diabetes development was observed. No difference in diabetes development was observed in Tyr/Tyr(c) heterozygotes, showing that protection was recessive. Analysis of diabetes progression in another NOD stock congenic for C57BL/6 alleles on Chromosome 7 linked to the glucose phosphate isomerase (Gpi1(b)) locus provided no protection, indicating that the diabetes resistance (Idd) gene was distal to 34 cM (D7Mit346). Approximately 5 cM of the distal congenic region overlaps a region from C57L previously associated with protection when homozygous. The delayed onset and reduced frequency of diabetes in the NOD.CBALs-Tyr(+)/Lt stock is an advantage when females of this stock are used as surrogate mothers in studies involving hysterectomy or embryo transfers. Indeed, a newly developed NOD embryonic stem (ES) cell line injected into NOD.CBALs- Tyr(+)/Lt blastocysts produced approximately 50% live-born mice, of which approximately 11% were chimeric. Presumably because of high genomic instability, no germline transmission was observed.


Assuntos
Quimera/genética , Diabetes Mellitus Experimental/genética , Camundongos Endogâmicos NOD/genética , Células-Tronco , Animais , Animais Congênicos , Linhagem Celular , Mapeamento Cromossômico , Cromossomos de Mamíferos , Diabetes Mellitus Experimental/sangue , Embrião de Mamíferos/citologia , Feminino , Insulina/sangue , Masculino , Camundongos , Penetrância
9.
Biotechnol Bioeng ; 84(5): 505-17, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14574685

RESUMO

Although it is known that leukemia inhibitory factor (LIF) supports the derivation and expansion of murine embryonic stem (ES) cells, it is unclear whether this is due to inhibitory effects of LIF on ES cell differentiation or stimulatory effects on ES cell survival and proliferation. Using an ES cell line transgenic for green fluorescent protein (GFP) expression under control of the Oct4 promoter, we were able to simultaneously track the responses of live Oct4-GFP-positive (ES) and -negative (differentiated) fractions to LIF, serum, and other growth factors. Our findings show that, in addition to inhibiting differentiation of undifferentiated cells, the administration of LIF resulted in a distinct dose-dependent survival and proliferation advantage, thus enabling the long-term propagation of undifferentiated cells. Competitive responses from the differentiated cell fraction could only be elicited upon addition of serum, fibroblast growth factor-4 (FGF-4), or insulin-like growth factor-1 (IGF-1). The growth factors did not induce additional differentiation of ES cells, but rather they significantly improved the proliferation of already differentiated cells. Our analyses show that, by adjusting culture conditions, including the type and amount of growth factors or cytokines present, the frequency of media exchange, and the presence or absence of serum, we could selectively and specifically alter the survival, proliferation, and differentiation dynamics of the two subpopulations, and thus effectively control population outputs. Our findings therefore have important applications in engineering stem cell culture systems to predictably generate desired stem cells or their derivatives for various regenerative therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Proteínas de Ligação a DNA/metabolismo , Interleucina-6/farmacologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Fatores de Transcrição , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Fator Inibidor de Leucemia , Fator 3 de Transcrição de Octâmero , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa