Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687158

RESUMO

Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (2-7) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds 4 and 5, characterized by a dianiline (4) or dianilide (5) moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 µM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI50 < 1 µM). The scaffold of compound 5 could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.


Assuntos
Glioblastoma , Neoplasias da Próstata , Humanos , Masculino , Monoaminoxidase , Poliaminas/farmacologia , Inibidores da Monoaminoxidase/farmacologia
2.
J Chem Inf Model ; 62(16): 3910-3927, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35948439

RESUMO

Natural polyamines (PAs) are key players in cellular homeostasis by regulating cell growth and proliferation. Several observations highlight that PAs are also implicated in pathways regulating cell death. Indeed, the PA accumulation cytotoxic effect, maximized with the use of bovine serum amine oxidase (BSAO) enzyme, represents a valuable strategy against tumor progression. In the present study, along with the design, synthesis, and biological evaluation of a series of new spermine (Spm) analogues (1-23), a mixed structure-based (SB) and ligand-based (LB) protocol was applied. Binding modes of BSAO-PA modeled complexes led to clarify electrostatic and steric features likely affecting the BSAO-PA biochemical kinetics. LB and SB three-dimensional quantitative structure-activity relationship (Py-CoMFA and Py-ComBinE) models were developed by means of the 3d-qsar.com portal, and their analysis represents a strong basis for future design and synthesis of PA BSAO substrates for potential application in oxidative stress-induced chemotherapy.


Assuntos
Antineoplásicos , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ligantes , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Poliaminas/metabolismo , Poliaminas/farmacologia , Espermina/farmacologia , Espermina/uso terapêutico
3.
Molecules ; 28(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36615465

RESUMO

Majority of drugs act by interacting with chiral counterparts, e.g., proteins, and we are, unfortunately, well-aware of how chirality can negatively impact the outcome of a therapeutic regime. The number of chiral, non-racemic drugs on the market is increasing, and it is becoming ever more important to prepare these compounds in a safe, economic, and environmentally sustainable fashion. Asymmetric organocatalysis has a long history, but it began its renaissance era only during the first years of the millennium. Since then, this field has reached an extraordinary level, as confirmed by the awarding of the 2021 Chemistry Nobel Prize. In the present review, we wish to highlight the application of organocatalysis in the synthesis of enantio-enriched molecules that may be of interest to the pharmaceutical industry and the medicinal chemistry community. We aim to discuss the different activation modes observed for organocatalysts, examining, for each of them, the generally accepted mechanisms and the most important and developed reactions, that may be useful to medicinal chemists. For each of these types of organocatalytic activations, select examples from academic and industrial applications will be disclosed during the synthesis of drugs and natural products.


Assuntos
Produtos Biológicos , Catálise , Produtos Biológicos/química , Química Farmacêutica
4.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073043

RESUMO

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a rare neurodevelopmental disorder characterized by early-onset seizures and severe cognitive, motor, and visual impairments. To date there are no therapies for CDKL5 deficiency disorder (CDD). In view of the severity of the neurological phenotype of CDD patients it is widely assumed that CDKL5 may influence the activity of a variety of cellular pathways, suggesting that an approach aimed at targeting multiple cellular pathways simultaneously might be more effective for CDD. Previous findings showed that a single-target therapy aimed at normalizing impaired GSK-3ß or histone deacetylase (HDAC) activity improved neurodevelopmental and cognitive alterations in a mouse model of CDD. Here we tested the ability of a first-in-class GSK-3ß/HDAC dual inhibitor, Compound 11 (C11), to rescue CDD-related phenotypes. We found that C11, through inhibition of GSK-3ß and HDAC6 activity, not only restored maturation, but also significantly improved survival of both human CDKL5-deficient cells and hippocampal neurons from Cdkl5 KO mice. Importantly, in vivo treatment with C11 restored synapse development, neuronal survival, and microglia over-activation, and improved motor and cognitive abilities of Cdkl5 KO mice, suggesting that dual GSK-3ß/HDAC6 inhibitor therapy may have a wider therapeutic benefit in CDD patients.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Síndromes Epilépticas/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inibidores de Histona Desacetilases , Neurônios/efeitos dos fármacos , Espasmos Infantis/tratamento farmacológico , Animais , Linhagem Celular , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia
5.
Curr Opin Neurol ; 32(6): 796-801, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31577602

RESUMO

PURPOSE OF REVIEW: Traumatic brain injury (TBI) is one of the leading causes of death in the developed world. Despite advances at the bedside, pharmacological interventions have yet to be successful likely because of the need for a better understanding of disease mechanisms as potential targets for intervention. Recent evidence implicates a family of enzymes, namely transglutaminases, in the pathological mechanisms of TBI. RECENT FINDINGS: Transglutaminases are multifunctional, calcium-dependent enzymes that are significantly upregulated in TBI. They are known for their transamidase activity that consists of the covalent crosslinking of glutamines and lysines. Recent data support their ability to aminylate proteins with primary amines such as polyamines or monoamines like serotonin and histamine and to regulate gene transcription. SUMMARY: In this review, we will discuss data that support a role for transglutaminases, in particular transglutaminase 2, in mitochondrial damage, excitotoxicity and inflammation and their relationship to the pathobiology of TBI. We will review past evidence and outline the need for new experiments that could clarify the role of these enzymes in cell injury and death associated with traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Morte Celular , Inflamação , Regeneração Nervosa , Neurônios , Transglutaminases/metabolismo , Animais , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia
6.
J Enzyme Inhib Med Chem ; 34(1): 740-752, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30829081

RESUMO

Fourteen polyamine analogues, asymmetric or symmetric substituted spermine (1-9) or methoctramine (10-14) analogues, were evaluated as potential inhibitors or substrates of two enzymes of the polyamine catabolic pathway, spermine oxidase (SMOX) and acetylpolyamine oxidase (PAOX). Compound 2 turned out to be the best substrate for PAOX, having the highest affinity and catalytic efficiency with respect to its physiological substrates. Methoctramine (10), a well-known muscarinic M2 receptor antagonist, emerged as the most potent competitive PAOX inhibitor known so far (Ki = 10 nM), endowed with very good selectivity compared with SMOX (Ki=1.2 µM vs SMOX). The efficacy of methoctramine in inhibiting PAOX activity was confirmed in the HT22 cell line. Methoctramine is a very promising tool in the design of drugs targeting the polyamine catabolism pathway, both to understand the physio-pathological role of PAOX vs SMOX and for pharmacological applications, being the polyamine pathway involved in various pathologies.


Assuntos
Diaminas/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Poliaminas/farmacologia , Diaminas/síntese química , Diaminas/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliaminas/síntese química , Poliaminas/química , Relação Estrutura-Atividade , Poliamina Oxidase
7.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540249

RESUMO

Cancer represents one of the leading causes of death worldwide. Progresses in treatment of cancer have continued at a rapid pace. However, undesirable side effects and drug resistance remain major challenges for therapeutic success. Natural products represent a valuable starting point to develop new anticancer strategies. Polyphenols, well-known as antioxidant, exert anticancer effects through the modulation of multiple pathways and mechanisms. Oat (Avena sativa L., Poaceae) is a unique source of avenanthramides (AVAs), a group of polyphenolic alkaloids, considered as its signature compounds. The present review aims to offer a comprehensive and critical perspective on the chemopreventive and chemotherapeutic potential of AVAs. AVAs prevent cancer mainly by blocking reactive species. Moreover, they exhibit potential therapeutic activity through the modulation of different pathways including the activation of apoptosis and senescence, the block of cell proliferation, and the inhibition of epithelial mesenchymal transition and metastatization. AVAs are promising chemopreventive and anticancer phytochemicals, which need further clinical trials and toxicological studies to define their efficacy in preventing and reducing the burden of cancer diseases.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Avena/química , Neoplasias/tratamento farmacológico , ortoaminobenzoatos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia
8.
Bioorg Med Chem Lett ; 28(6): 1001-1004, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496367

RESUMO

Epigenetic modulators Histone deacetylases (HDACs) and Lysine demethylase (LSD1) are validated targets for anticancer therapy. Both HDAC1/2 and LSD1 are found in association with the repressor protein CoREST in a transcriptional co-repressor complex, which is responsible for gene silencing. Combined modulation of both targets results in a synergistic antiproliferative activity. In the present investigation, we report about the design and synthesis of a series of polyamine-based HDACs-LSD1 dual binding inhibitors obtained by coupling Vorinostat and Tranylcypromine. Compound 4 emerged as the most promising of the synthesized series, showing good inhibitory activity towards HDAC1 and LSD1 either in vitro and in cell-based assay (Ki = 42.52 ±â€¯8.94 nM and IC50 = 3.85 µM, respectively). Furthermore, at 70.0 µM compound 4 induced a more pronounced cytotoxic effect than Vorinostat (68.6% vs 56.6% of dead cells) in MCF7 cancer cell line.


Assuntos
Antineoplásicos/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Poliaminas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Células MCF-7 , Estrutura Molecular , Poliaminas/síntese química , Poliaminas/química , Relação Estrutura-Atividade
9.
Drug Dev Res ; 77(8): 437-443, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27539712

RESUMO

Preclinical Research A novel and promising approach to overcome the limits of single-target therapy is represented by the multitarget approach. This strategy aims to simultaneously modulate several targets involved in the pathophysiology of a multifactorial disease, with the potential to enhance therapeutic effectiveness and improve drug safety. Although there has been a marked growth in the design of multitarget drugs (MTDs) in the last years in the context of anti-Alzheimer and anti-cancer drug discovery, a parallel expansion was not observed in antipsychotic drugs, even that for psychiatric disorders there is a cogent medical need for new treatments. The discovery of new MTDs is a challenging task and we will describe the main strategies that have been developed over the years for the design of multifunctional molecules in antipsychotic drug discovery. In particular, we will focus on the few available MTDs based on the design of selective serotonin re-uptake inhibitors, used as antidepressants and in the treatment of schizophrenia. Drug Dev Res 77 : 437-443, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Antipsicóticos/síntese química , Esquizofrenia/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Antipsicóticos/química , Antipsicóticos/uso terapêutico , Desenho de Fármacos , Humanos , Estrutura Molecular , Polifarmacologia , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
10.
Bioorg Med Chem ; 23(13): 3819-30, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25935290

RESUMO

The synthesis, biological and molecular modeling evaluation of a series of macrocyclic naphthalene diimides is reported. The present investigation expands on the study of structure-activity relationships of prototype compound 2 by constraining the molecule into a macrocyclic structure with the aim of improving its G-quadruplex binding activity and selectivity. The new derivatives, compounds 4-7 carry spermidine- and spermine-like linkers while in compound 8 the inner basic nitrogen atoms of spermine have been replaced with oxygen atoms. The design strategy has led to potent compounds stabilizing both human telomeric (F21T) and c-KIT2 quadruplex sequences, and high selectivity for quadruplex in comparison to duplex DNA. Antiproliferative effects of the new derivatives 4-8 have been evaluated in a panel of cancer cell lines and all the tested compounds showed activity in the low micromolar or sub-micromolar range of concentrations. In order to rationalize the molecular basis of the DNA G-quadruplex versus duplex recognition preference, docking and molecular dynamics studies have been performed. The computational results support the observation that the main driving force in the recognition is due to electrostatic factors.


Assuntos
Antineoplásicos/síntese química , DNA de Neoplasias/antagonistas & inibidores , Quadruplex G , Imidas/síntese química , Naftalenos/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA de Neoplasias/química , Desenho de Fármacos , Humanos , Imidas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftalenos/farmacologia , Espermidina/química , Espermina/química , Eletricidade Estática , Relação Estrutura-Atividade
11.
RSC Med Chem ; 15(6): 2045-2062, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911150

RESUMO

Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 µM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.

12.
ACS Chem Neurosci ; 15(11): 2099-2111, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38747979

RESUMO

Despite recent FDA approvals, Alzheimer's disease (AD) still represents an unmet medical need. Among the different available therapeutic approaches, the development of multitarget molecules represents one of the most widely pursued. In this work, we present a second generation of dual ligands directed toward highly networked targets that are deeply involved in the development of the disease, namely, Histone Deacetylases (HDACs) and Glycogen Synthase Kinase 3ß (GSK-3ß). The synthesized compounds are highly potent GSK-3ß, HDAC2, and HDAC6 inhibitors with IC50 values in the nanomolar range of concentrations. Among them, compound 4 inhibits histone H3 and tubulin acetylation at 0.1 µM concentration, blocks hyperphosphorylation of tau protein, and shows interesting immunomodulatory and neuroprotective properties. These features, together with its ability to cross the blood-brain barrier and its favorable physical-chemical properties, make compound 4 a promising hit for the development of innovative disease-modifying agents.


Assuntos
Doença de Alzheimer , Glicogênio Sintase Quinase 3 beta , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas tau/metabolismo , Histona Desacetilases/metabolismo , Fosforilação/efeitos dos fármacos , Acetilação , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/antagonistas & inibidores
13.
Bioorg Med Chem Lett ; 23(13): 3901-4, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23692871

RESUMO

The biological activities of six symmetrically substituted 2-methoxy-benzyl polymethylene tetraamines (1-4) and diphenylethyl polymethylene tetraamines (5 and 6) as N-methyl-D-aspartate (NMDA) receptor channel blockers, were evaluated in vitro and in vivo. Although all compounds exhibited stronger channel block activities in comparison to memantine in Xenopus oocytes voltage clamped at -70 mV, only compound 2 (0.4 mg/kg intravenous injection) decreased the size of brain infarction in a photochemically induced thrombosis model mice at the same extent of memantine (10mg/kg intravenous injection). Other compounds (1, 3, 4, 5 and 6) did not decrease the size of brain infarction significantly due to the limited injection doses. The present study suggests that compound 2 could represent a valuable lead compound to design low toxicity polyamines for clinical use against stroke.


Assuntos
Poliaminas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenho de Fármacos , Memantina/administração & dosagem , Memantina/química , Memantina/farmacologia , Camundongos , Estrutura Molecular , Poliaminas/administração & dosagem , Poliaminas/química , Relação Estrutura-Atividade , Trombose/tratamento farmacológico
14.
ACS Bio Med Chem Au ; 3(1): 32-45, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101607

RESUMO

Targeted protein degradation (TPD) is emerging as one of the most innovative strategies to tackle infectious diseases. Particularly, proteolysis-targeting chimera (PROTAC)-mediated protein degradation may offer several benefits over classical anti-infective small-molecule drugs. Because of their peculiar and catalytic mechanism of action, anti-infective PROTACs might be advantageous in terms of efficacy, toxicity, and selectivity. Importantly, PROTACs may also overcome the emergence of antimicrobial resistance. Furthermore, anti-infective PROTACs might have the potential to (i) modulate "undruggable" targets, (ii) "recycle" inhibitors from classical drug discovery approaches, and (iii) open new scenarios for combination therapies. Here, we try to address these points by discussing selected case studies of antiviral PROTACs and the first-in-class antibacterial PROTACs. Finally, we discuss how the field of PROTAC-mediated TPD might be exploited in parasitic diseases. Since no antiparasitic PROTAC has been reported yet, we also describe the parasite proteasome system. While in its infancy and with many challenges ahead, we hope that PROTAC-mediated protein degradation for infectious diseases may lead to the development of next-generation anti-infective drugs.

15.
ACS Chem Neurosci ; 14(11): 1963-1970, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218653

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine kinase and an attractive therapeutic target for Alzheimer's disease. Based on proteolysis-targeting chimera (PROTAC) technology, a small set of novel GSK-3ß degraders was designed and synthesized by linking two different GSK-3ß inhibitors, SB-216763 and tideglusib, to pomalidomide, as E3 recruiting element, through linkers of different lengths. Compound 1 emerged as the most effective PROTAC being nontoxic up to 20 µM to neuronal cells and already able to degrade GSK-3ß starting from 0.5 µM in a dose-dependent manner. PROTAC 1 significantly reduced the neurotoxicity induced by Aß25-35 peptide and CuSO4 in SH-SY5Y cells in a dose-dependent manner. Based on its encouraging features, PROTAC 1 may serve as a starting point to develop new GSK-3ß degraders as potential therapeutic agents.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Proteínas Serina-Treonina Quinases , Fosforilação
16.
Amino Acids ; 42(2-3): 913-28, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21858471

RESUMO

In the last few decades, medicinal chemists have carried out extensive research on synthetic polyamines for use as anticancer drugs and multitarget-directed ligands in neurodegenerative diseases. The aim of this study was to evaluate the effect of some synthetic polyamines as inhibitors of two new potential targets, human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) and monoamine oxidases B (MAO B), enzymes involved in various multi-factorial diseases such as Alzheimer's disease. N,N'-Dibenzyl-dodecane-1,12-diamine (Bis-Bza-Diado), a newly synthesised compound, and ELP 12, a muscarinic cholinergic M(2) receptor antagonist, were found to behave as reversible and mixed non-competitive inhibitors of both amine oxidases (dissociation constants of about 100 µM). ELP 12 was found to be more selective for SSAO/VAP-1. Combining kinetic and structural approaches, the binding mode of ELP 12 to SSAO/VAP-1 was investigated. ELP 12 may bind at the entrance of the active site channel by ionic interactions with ASP446 and/or ASP180; one end of the polyamine may be accommodated inside the channel, reaching the TPQ cofactor area. The binding of ELP 12 induces rearrangement of the secondary structure of the enzyme and impedes substrate entry and/or product release and catalysis. These structural data reveal that the entrance and the first part of the SSAO/VAP-1 channel may be considered as a new target area, or a "secondary binding site", for modulators of human SSAO/VAP-1 activity. These results indicate ELP 12 and Bis-Bza-Diado as new "skeletons" for the development of novel SSAO/VAP-1 and MAO B inhibitors.


Assuntos
Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Monoaminoxidase/efeitos dos fármacos , Poliaminas/farmacologia , Dicroísmo Circular , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
17.
J Med Chem ; 65(14): 9507-9530, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35816671

RESUMO

Proteolysis targeting chimera (PROTAC)-mediated protein degradation has prompted a radical rethink and is at a crucial stage in driving a drug discovery transition. To fully harness the potential of this technology, a growing paradigm toward enriching PROTACs with other therapeutic modalities has been proposed. Could researchers successfully combine two modalities to yield multifunctional PROTACs with an expanded profile? In this Perspective, we try to answer this question. We discuss how this possibility encompasses different approaches, leading to multitarget PROTACs, light-controllable PROTACs, PROTAC conjugates, and macrocycle- and oligonucleotide-based PROTACs. This possibility promises to further enhance PROTAC efficacy and selectivity, minimize side effects, and hit undruggable targets. While PROTACs have reached the clinical investigation stage, additional steps must be taken toward the translational development of multifunctional PROTACs. A deeper and detailed understanding of the most critical challenges is required to fully exploit these opportunities and decisively enrich the PROTAC toolbox.


Assuntos
Ubiquitina-Proteína Ligases , Descoberta de Drogas , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
18.
Bioorg Med Chem Lett ; 21(9): 2655-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21236667

RESUMO

Memoquin (1) is a lead compound multitargeted against Alzheimer's disease (AD). It is an AChE inhibitor, free-radical scavenger, and inhibitor of amyloid-ß (Aß) aggregation. A new series of 1 derivatives was designed and synthesized by linking its 2,5-diamino-benzoquinone core with motifs that are present in the structure of known amyloid binding agents like curcumin, the benzofuran derivative SKF64346, or the benzothiazole bearing compounds KHG21834 and BTA-1. The weaker AChE inhibitory potencies and the concomitant nearly equipotent anti-amyloid activities of the new compounds with respect to 1 resulted in a more balanced biological profile against both targets. Selected compounds turned out to be effective Aß aggregation inhibitors in a cell-based assay. By properly combining two or more distinct pharmacological properties in a molecule, we can achieve greater effectiveness compared to single-targeted drugs for investigating AD.


Assuntos
Alcanos/química , Amiloide/antagonistas & inibidores , Inibidores da Colinesterase/síntese química , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Etilaminas/química , Alcanos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Amiloide/genética , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Células Cultivadas , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores Enzimáticos/farmacologia , Etilaminas/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular
19.
J Med Chem ; 64(1): 26-41, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33346659

RESUMO

Alzheimer's disease (AD), like other multifactorial diseases, is the result of a systemic breakdown of different physiological networks. As result, several lines of evidence suggest that it could be more efficiently tackled by molecules directed toward different dysregulated biochemical targets or pathways. In this context, the selection of targets to which the new molecules will be directed is crucial. For years, the design of such multitarget-directed ligands (MTDLs) has been based on the selection of main targets involved in the "cholinergic" and the "ß-amyloid" hypothesis. Recently, there have been some reports on MTDLs targeting the glycogen synthase kinase 3ß (GSK-3ß) enzyme, due to its appealing properties. Indeed, this enzyme is involved in tau hyperphosphorylation, controls a multitude of CNS-specific signaling pathways, and establishes strict connections with several factors implicated in AD pathogenesis. In the present Miniperspective, we will discuss the reasons behind the development of GSK-3ß-directed MTDLs and highlight some of the recent efforts to obtain these new classes of MTDLs as potential disease-modifying agents.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Descoberta de Drogas , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/química , Humanos , Fosforilação
20.
Amino Acids ; 38(2): 383-92, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20012115

RESUMO

The binding of polyamines to a variety of receptors and other defined recognition sites has been widely reported. It is well-known that polyamines interact with aspartate, glutamate, and aromatic residues of a given receptor and/or enzyme mainly through the formation of ion bonds, since at physiological pH, protonation of amino groups is nearly complete. From this, the hypothesis arises that a polyamine may be a universal template able to recognize different receptor systems. This hypothesis suggests that both affinity and selectivity may be fine-tuned by inserting appropriate substituents onto the amine functions and by varying the methylene chain lengths between them on the polyamine backbone. In this paper, we detail several application of this design strategy aimed at discovering potent and selective polyamines able to bind neurotransmitter receptors and enzymes, such as muscarinic receptor subtypes, muscle-type nicotinic receptors and acethylcholinesterase.


Assuntos
Poliaminas/química , Poliaminas/metabolismo , Animais , Enzimas/química , Enzimas/metabolismo , Humanos , Cinética , Estrutura Molecular , Poliaminas/síntese química , Ligação Proteica , Receptores de Neurotransmissores/química , Receptores de Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa