Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
PLoS Genet ; 17(9): e1009802, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543263

RESUMO

Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.


Assuntos
Lipase/metabolismo , Lipólise , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Animais , Dieta Hiperlipídica , Humanos , Lipase/genética , Lipossomos , Camundongos , Mutação de Sentido Incorreto , Período Pós-Prandial , Triglicerídeos/sangue
2.
Circ Res ; 127(11): 1347-1361, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32912065

RESUMO

RATIONALE: Single-nucleotide polymorphisms near the ILRUN (inflammation and lipid regulator with ubiquitin-associated-like and NBR1 [next to BRCA1 gene 1 protein]-like domains) gene are genome-wide significantly associated with plasma lipid traits and coronary artery disease (CAD), but the biological basis of this association is unknown. OBJECTIVE: To investigate the role of ILRUN in plasma lipid and lipoprotein metabolism. METHODS AND RESULTS: ILRUN encodes a protein that contains a ubiquitin-associated-like domain, suggesting that it may interact with ubiquitinylated proteins. We generated mice globally deficient for Ilrun and found they had significantly lower plasma cholesterol levels resulting from reduced liver lipoprotein production. Liver transcriptome analysis uncovered altered transcription of genes downstream of lipid-related transcription factors, particularly PPARα (peroxisome proliferator-activated receptor alpha), and livers from Ilrun-deficient mice had increased PPARα protein. Human ILRUN was shown to bind to ubiquitinylated proteins including PPARα, and the ubiquitin-associated-like domain of ILRUN was found to be required for its interaction with PPARα. CONCLUSIONS: These findings establish ILRUN as a novel regulator of lipid metabolism that promotes hepatic lipoprotein production. Our results also provide functional evidence that ILRUN may be the casual gene underlying the observed genetic associations with plasma lipids at 6p21 in human.


Assuntos
Hepatócitos/metabolismo , Lipoproteínas/sangue , Fígado/metabolismo , Animais , Glicemia/metabolismo , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , HDL-Colesterol/sangue , HDL-Colesterol/genética , Regulação da Expressão Gênica , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Células HEK293 , Humanos , Lipoproteínas/genética , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ligação Proteica , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Transcriptoma , Triglicerídeos/sangue , Triglicerídeos/genética , Ubiquitinação
4.
Circulation ; 141(18): 1463-1476, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237898

RESUMO

BACKGROUND: Apo (apolipoprotein) M mediates the physical interaction between high-density lipoprotein (HDL) particles and sphingosine-1-phosphate (S1P). Apo M exerts anti-inflammatory and cardioprotective effects in animal models. METHODS: In a subset of PHFS (Penn Heart Failure Study) participants (n=297), we measured apo M by Enzyme-Linked ImmunoSorbent Assay (ELISA). We also measured total S1P by liquid chromatography-mass spectrometry and isolated HDL particles to test the association between apo M and HDL-associated S1P. We confirmed the relationship between apo M and outcomes using modified aptamer-based apo M measurements among 2170 adults in the PHFS and 2 independent cohorts: the Washington University Heart Failure Registry (n=173) and a subset of TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial; n=218). Last, we examined the relationship between apo M and ≈5000 other proteins (SomaScan assay) to identify biological pathways associated with apo M in heart failure. RESULTS: In the PHFS, apo M was inversely associated with the risk of death (standardized hazard ratio, 0.56 [95% CI, 0.51-0.61]; P<0.0001) and the composite of death/ventricular assist device implantation/heart transplantation (standardized hazard ratio, 0.62 [95% CI, 0.58-0.67]; P<0.0001). This relationship was independent of HDL cholesterol or apo AI levels. Apo M remained associated with death (hazard ratio, 0.78 [95% CI, 0.69-0.88]; P<0.0001) and the composite of death/ventricular assist device/heart transplantation (hazard ratio, 0.85 [95% CI, 0.76-0.94]; P=0.001) in models that adjusted for multiple confounders. This association was present in both heart failure with reduced and preserved ejection fraction and was replicated in the Washington University cohort and a cohort with heart failure with preserved ejection fraction only (TOPCAT). The S1P and apo M content of isolated HDL particles strongly correlated (R=0.81, P<0.0001). The top canonical pathways associated with apo M were inflammation (negative association), the coagulation system (negative association), and liver X receptor/retinoid X receptor activation (positive association). The relationship with inflammation was validated with multiple inflammatory markers measured with independent assays. CONCLUSIONS: Reduced circulating apo M is independently associated with adverse outcomes across the spectrum of human heart failure. Further research is needed to assess whether the apo M/S1P axis is a suitable therapeutic target in heart failure.


Assuntos
Apolipoproteínas M/sangue , Insuficiência Cardíaca/sangue , Proteoma , Idoso , Biomarcadores/sangue , Regulação para Baixo , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/terapia , Humanos , Lipoproteínas HDL/sangue , Lisofosfolipídeos/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteômica , Ensaios Clínicos Controlados Aleatórios como Assunto , Sistema de Registros , Medição de Risco , Fatores de Risco , Esfingosina/análogos & derivados , Esfingosina/sangue , Fatores de Tempo , Estados Unidos
5.
Molecules ; 26(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34833954

RESUMO

High-density lipoprotein cholesterol (HDL-C) is thought to be atheroprotective yet some patients with elevated HDL-C levels develop cardiovascular disease, possibly due to the presence of dysfunctional HDL. We aimed to assess the metabolic fate of circulating HDL particles in patients with high HDL-C with and without coronary artery disease (CAD) using in vivo dual labeling of its cholesterol and protein moieties. We measured HDL apolipoprotein (apo) A-I, apoA-II, free cholesterol (FC), and cholesteryl ester (CE) kinetics using stable isotope-labeled tracers (D3-leucine and 13C2-acetate) as well as ex vivo cholesterol efflux to HDL in subjects with (n = 6) and without (n = 6) CAD that had HDL-C levels >90th percentile. Healthy controls with HDL-C within the normal range (n = 6) who underwent the same procedures were used as the reference. Subjects with high HDL-C with and without CAD had similar plasma lipid levels and similar apoA-I, apoA-II, HDL FC, and CE pool sizes with no significant differences in fractional clearance rates (FCRs) or production rates (PRs) of these components between groups. Subjects with high HDL-C with and without CAD also had similar basal and cAMP-stimulated ex vivo cholesterol efflux to HDL. When all subjects were considered (n = 18), unstimulated non-ABCA1-mediated efflux (but not ABCA1-specific efflux) was correlated positively with apoA-I production (r = 0.552, p = 0.017) and HDL FC and CE pool sizes, and negatively with the fractional clearance rate of FC (r = -0.759, p = 4.1 × 10-4) and CE (r = -0.652, p = 4.57 × 10-3). Our data are consistent with the concept that ex vivo non-ABCA1 efflux capacity may correlate with slower in vivo turnover of HDL cholesterol moieties. The use of a dual labeling protocol provided for the first time the opportunity to assess the association of ex vivo cholesterol efflux capacity with in vivo HDL cholesterol metabolic parameters.


Assuntos
HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/metabolismo , Adulto , Idoso , Apolipoproteína A-I/metabolismo , Feminino , Humanos , Lipídeos/sangue , Lipoproteínas HDL/metabolismo , Masculino , Pessoa de Meia-Idade
6.
Curr Opin Lipidol ; 29(1): 1-9, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29176407

RESUMO

PURPOSE OF REVIEW: Cholesterol metabolism has been the object of intense investigation for decades. This review focuses on classical and novel methods assessing in vivo cholesterol metabolism in humans. Two factors have fueled cholesterol metabolism studies in the last few years: the renewed interest in the study of reverse cholesterol transport (RCT) as an atheroprotective mechanism and the importance of the gut microbiome in affecting cholesterol metabolism. RECENT FINDINGS: Recent applications of these methods have spanned from the assessment of the effect on cholesterol synthesis, absorption or excretion of drugs (such as ezetimibe, PCSK9 inhibitors and plant sterols) and the gut microbiome to the more complex assessment of transintestinal cholesterol excretion (TICE) and RCT. SUMMARY: These methods continue to be a valuable tool to answer novel questions and investigate the complexity of in-vivo cholesterol metabolism.


Assuntos
Anticolesterolemiantes/uso terapêutico , Aterosclerose/metabolismo , Colesterol/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Humanos
7.
J Biol Chem ; 292(25): 10444-10454, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28473467

RESUMO

Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (GL) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion (Ppp1r3bΔhep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3bΔhep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3bΔhep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis.


Assuntos
Glicemia/metabolismo , Metabolismo Energético/fisiologia , Gluconeogênese/fisiologia , Glicogênio/biossíntese , Fígado/metabolismo , Proteína Fosfatase 1/biossíntese , Animais , Glicemia/genética , Jejum/sangue , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose-6-Fosfatase/biossíntese , Glucose-6-Fosfatase/genética , Glicogênio/genética , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Proteína Fosfatase 1/genética
8.
Arterioscler Thromb Vasc Biol ; 37(9): 1770-1775, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729361

RESUMO

OBJECTIVE: Lp(a) [lipoprotein (a)] is composed of apoB (apolipoprotein B) and apo(a) [apolipoprotein (a)] and is an independent risk factor for cardiovascular disease and aortic stenosis. In clinical trials, anacetrapib, a CETP (cholesteryl ester transfer protein) inhibitor, causes significant reductions in plasma Lp(a) levels. We conducted an exploratory study to examine the mechanism for Lp(a) lowering by anacetrapib. APPROACH AND RESULTS: We enrolled 39 participants in a fixed-sequence, double-blind study of the effects of anacetrapib on the metabolism of apoB and high-density lipoproteins. Twenty-nine patients were randomized to atorvastatin 20 mg/d, plus placebo for 4 weeks, and then atorvastatin plus anacetrapib (100 mg/d) for 8 weeks. The other 10 subjects were randomized to double placebo for 4 weeks followed by placebo plus anacetrapib for 8 weeks. We examined the mechanisms of Lp(a) lowering in a subset of 12 subjects having both Lp(a) levels >20 nmol/L and more than a 15% reduction in Lp(a) by the end of anacetrapib treatment. We performed stable isotope kinetic studies using 2H3-leucine at the end of each treatment to measure apo(a) fractional catabolic rate and production rate. Median baseline Lp(a) levels were 21.5 nmol/L (interquartile range, 9.9-108.1 nmol/L) in the complete cohort (39 subjects) and 52.9 nmol/L (interquartile range, 38.4-121.3 nmol/L) in the subset selected for kinetic studies. Anacetrapib treatment lowered Lp(a) by 34.1% (P≤0.001) and 39.6% in the complete and subset cohort, respectively. The decreases in Lp(a) levels were because of a 41% reduction in the apo(a) production rate, with no effects on apo(a) fractional catabolic rate. CONCLUSIONS: Anacetrapib reduces Lp(a) levels by decreasing its production. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00990808.


Assuntos
Anticolesterolemiantes/uso terapêutico , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Hipercolesterolemia/tratamento farmacológico , Lipoproteína(a)/sangue , Oxazolidinonas/uso terapêutico , Adulto , Idoso , Anticolesterolemiantes/efeitos adversos , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Cromatografia Líquida , Método Duplo-Cego , Regulação para Baixo , Feminino , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/diagnóstico , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Oxazolidinonas/efeitos adversos , Pennsylvania , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem , Fatores de Tempo , Resultado do Tratamento
9.
J Lipid Res ; 58(4): 731-741, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28137768

RESUMO

Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preß HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT.


Assuntos
HDL-Colesterol/sangue , Colesterol/sangue , Lipoproteínas HDL/sangue , Proteínas de Transferência de Fosfolipídeos/genética , Animais , Transporte Biológico/genética , Dependovirus/genética , Regulação da Expressão Gênica , Lipoproteínas de Alta Densidade Pré-beta/biossíntese , Lipoproteínas de Alta Densidade Pré-beta/sangue , Lipoproteínas de Alta Densidade Pré-beta/genética , Humanos , Lipoproteínas HDL/genética , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas de Transferência de Fosfolipídeos/biossíntese , Deleção de Sequência
10.
J Lipid Res ; 58(4): 752-762, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167703

RESUMO

Reverse cholesterol transport (RCT) is thought to be an atheroprotective function of HDL, and macrophage-specific RCT in mice is inversely associated with atherosclerosis. We developed a novel method using 3H-cholesterol nanoparticles to selectively trace macrophage-specific RCT in vivo in humans. Use of 3H-cholesterol nanoparticles was initially tested in mice to assess the distribution of tracer and response to interventions known to increase RCT. Thirty healthy subjects received 3H-cholesterol nanoparticles intravenously, followed by blood and stool sample collection. Tracer counts were assessed in plasma, nonHDL, HDL, and fecal fractions. Data were analyzed by using multicompartmental modeling. Administration of 3H-cholesterol nanoparticles preferentially labeled macrophages of the reticuloendothelial system in mice, and counts were increased in mice treated with a liver X receptor agonist or reconstituted HDL, as compared with controls. In humans, tracer disappeared from plasma rapidly after injection of nanoparticles, followed by reappearance in HDL and nonHDL fractions. Counts present as free cholesterol increased rapidly and linearly in the first 240 min after nadir; counts in cholesteryl ester increased steadily over time. Estimates of fractional transfer rates of key RCT steps were obtained. These results support the use of 3H-cholesterol nanoparticles as a feasible approach for the measurement of macrophage RCT in vivo in humans.


Assuntos
Aterosclerose/sangue , HDL-Colesterol/sangue , Colesterol/sangue , Lipoproteínas HDL/metabolismo , Adolescente , Adulto , Idoso , Animais , Aterosclerose/patologia , Transporte Biológico/genética , Colesterol/química , Colesterol/genética , HDL-Colesterol/química , HDL-Colesterol/isolamento & purificação , Fezes/química , Feminino , Humanos , Lipoproteínas HDL/isolamento & purificação , Fígado/metabolismo , Fígado/patologia , Receptores X do Fígado/agonistas , Receptores X do Fígado/sangue , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Nanopartículas/química
11.
J Lipid Res ; 58(6): 1214-1220, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28314859

RESUMO

Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.


Assuntos
Apolipoproteínas/sangue , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Lipoproteínas VLDL/metabolismo , Oxazolidinonas/farmacologia , Triglicerídeos/metabolismo , Apolipoproteína C-II/sangue , Apolipoproteína C-III/sangue , Apolipoproteínas E/sangue , Interações Medicamentosas , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Pessoa de Meia-Idade
12.
Biochim Biophys Acta ; 1861(12 Pt A): 1968-1979, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671775

RESUMO

ATP-binding cassette transporter A1 (ABCA1) mediates formation of disc-shaped high-density lipoprotein (HDL) from cell lipid and lipid-free apolipoprotein A-I (apo A-I). Discoidal HDL particles are heterogeneous in physicochemical characteristics for reasons that are understood incompletely. Discoidal lipoprotein particles similar in characteristics and heterogeneity to cell-formed discoidal HDL can be reconstituted from purified lipids and apo A-I by cell-free, physicochemical methods. The heterogeneity of reconstituted HDL (rHDL) is sensitive to the lipid composition of the starting lipid/apo A-I mixture. To determine whether the heterogeneity of cell-formed HDL is similarly sensitive to changes in cell lipids, we investigated four compounds that have well-established effects on cell lipid metabolism and ABCA1-mediated cell cholesterol efflux. 2-Bromopalmitate, D609, monensin and U18666A decreased formation of the larger-sized, but dramatically increased formation of the smaller-sized HDL. 2-Bromopalmitate did not appear to affect ABCA1 activity, subcellular localization or oligomerization, but induced dissolution of the cholesterol-phospholipid complexes in the plasma membrane. Arachidonic and linoleic acids shifted HDL formation to the smaller-sized species. Tangier disease mutations and inhibitors of ABCA1 activity wheat germ agglutinin and AG 490 reduced formation of both larger-sized and smaller-sized HDL. The effect of probucol was similar to the effect of 2-bromopalmitate. Taking rHDL formation as a paradigm, we propose that ABCA1 mutations and activity inhibitors reduce the amount of cell lipid available for HDL formation, and the compounds in the 2-bromopalmitate group and the polyunsaturated fatty acids change cell lipid composition from one that favors formation of the larger-sized HDL particles to one that favors formation of the smaller-sized species.


Assuntos
Androstenos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL/metabolismo , Monensin/farmacologia , Palmitatos/farmacologia , Probucol/farmacologia , Tionas/farmacologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Norbornanos , Tamanho da Partícula , Fosfolipídeos/metabolismo , Células RAW 264.7 , Tiocarbamatos
13.
J Neurochem ; 140(1): 53-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27385127

RESUMO

The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.


Assuntos
Diferenciação Celular/fisiologia , Oligodendroglia/metabolismo , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Masculino , Camundongos , Oligodendroglia/efeitos dos fármacos , Pirrolidinas/farmacologia , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores
15.
Circ Res ; 117(1): 17-28, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25904599

RESUMO

RATIONALE: An efficient and reproducible source of genotype-specific human macrophages is essential for study of human macrophage biology and related diseases. OBJECTIVE: To perform integrated functional and transcriptome analyses of human induced pluripotent stem cell-derived macrophages (IPSDMs) and their isogenic human peripheral blood mononuclear cell-derived macrophage (HMDM) counterparts and assess the application of IPSDM in modeling macrophage polarization and Mendelian disease. METHODS AND RESULTS: We developed an efficient protocol for differentiation of IPSDM, which expressed macrophage-specific markers and took up modified lipoproteins in a similar manner to HMDM. Like HMDM, IPSDM revealed reduction in phagocytosis, increase in cholesterol efflux capacity and characteristic secretion of inflammatory cytokines in response to M1 (lipopolysaccharide+interferon-γ) activation. RNA-Seq revealed that nonpolarized (M0) as well as M1 or M2 (interleukin-4) polarized IPSDM shared transcriptomic profiles with their isogenic HMDM counterparts while also revealing novel markers of macrophage polarization. Relative to IPSDM and HMDM of control individuals, patterns of defective cholesterol efflux to apolipoprotein A-I and high-density lipoprotein-3 were qualitatively and quantitatively similar in IPSDM and HMDM of patients with Tangier disease, an autosomal recessive disorder because of mutations in ATP-binding cassette transporter AI. Tangier disease-IPSDM also revealed novel defects of enhanced proinflammatory response to lipopolysaccharide stimulus. CONCLUSIONS: Our protocol-derived IPSDM are comparable with HMDM at phenotypic, functional, and transcriptomic levels. Tangier disease-IPSDM recapitulated hallmark features observed in HMDM and revealed novel inflammatory phenotypes. IPSDMs provide a powerful tool for study of macrophage-specific function in human genetic disorders as well as molecular studies of human macrophage activation and polarization.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/metabolismo , Doença de Tangier/patologia , Transcriptoma , Transportador 1 de Cassete de Ligação de ATP/deficiência , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/fisiologia , Adulto , Idoso , Animais , Antígenos de Diferenciação/análise , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Colesterol/metabolismo , Corpos Embrioides/citologia , Feminino , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fagocitose , Fenótipo , RNA Mensageiro/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Doença de Tangier/genética , Doença de Tangier/metabolismo , Adulto Jovem
16.
Arterioscler Thromb Vasc Biol ; 36(5): 994-1002, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26966279

RESUMO

OBJECTIVE: Anacetrapib (ANA), an inhibitor of cholesteryl ester transfer protein (CETP) activity, increases plasma concentrations of high-density lipoprotein cholesterol (HDL-C), apolipoprotein A-I (apoA)-I, apoA-II, and CETP. The mechanisms responsible for these treatment-related increases in apolipoproteins and plasma CETP are unknown. We performed a randomized, placebo (PBO)-controlled, double-blind, fixed-sequence study to examine the effects of ANA on the metabolism of HDL apoA-I and apoA-II and plasma CETP. APPROACH AND RESULTS: Twenty-nine participants received atorvastatin (ATV) 20 mg/d plus PBO for 4 weeks, followed by ATV plus ANA 100 mg/d for 8 weeks (ATV-ANA). Ten participants received double PBO for 4 weeks followed by PBO plus ANA for 8 weeks (PBO-ANA). At the end of each treatment, we examined the kinetics of HDL apoA-I, HDL apoA-II, and plasma CETP after D3-leucine administration as well as 2D gel analysis of HDL subspecies. In the combined ATV-ANA and PBO-ANA groups, ANA treatment increased plasma HDL-C (63.0%; P<0.001) and apoA-I levels (29.5%; P<0.001). These increases were associated with reductions in HDL apoA-I fractional clearance rate (18.2%; P=0.002) without changes in production rate. Although the apoA-II levels increased by 12.6% (P<0.001), we could not discern significant changes in either apoA-II fractional clearance rate or production rate. CETP levels increased 102% (P<0.001) on ANA because of a significant reduction in the fractional clearance rate of CETP (57.6%, P<0.001) with no change in CETP production rate. CONCLUSIONS: ANA treatment increases HDL apoA-I and CETP levels by decreasing the fractional clearance rate of each protein.


Assuntos
Anticolesterolemiantes/uso terapêutico , Apolipoproteína A-I/sangue , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Dislipidemias/tratamento farmacológico , Lipoproteínas HDL/sangue , Oxazolidinonas/uso terapêutico , Adulto , Idoso , Anticolesterolemiantes/efeitos adversos , Apolipoproteína A-II/sangue , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , Método Duplo-Cego , Dislipidemias/sangue , Dislipidemias/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxazolidinonas/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
17.
Curr Atheroscler Rep ; 18(9): 54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27443326

RESUMO

Triglyceride-rich lipoproteins (TRLs) are causal contributors to the risk of developing coronary artery disease (CAD). Apolipoprotein C-III (apoC-III) is a component of TRLs that elevates plasma triglycerides (TGs) through delaying the lipolysis of TGs and the catabolism of TRL remnants. Recent human genetics approaches have shown that heterozygous loss-of-function mutations in APOC3, the gene encoding apoC-III, lower plasma TGs and protect from CAD. This observation has spawned new interest in therapeutic efforts to target apoC-III. Here, we briefly review both currently available as well as developing therapies for reducing apoC-III levels and function to lower TGs and cardiovascular risk. These therapies include existing options including statins, fibrates, thiazolidinediones, omega-3-fatty acids, and niacin, as well as an antisense oligonucleotide targeting APOC3 currently in clinical development. We review the mechanisms of action by which these drugs reduce apoC-III and the current understanding of how reduction in apoC-III may impact CAD risk.


Assuntos
Apolipoproteína C-III/fisiologia , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/prevenção & controle , Humanos , Lipoproteínas , Oligonucleotídeos Antissenso , Fatores de Risco , Triglicerídeos
18.
Eur Heart J ; 36(43): 3020-2, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26112886

RESUMO

AIMS: Fibrate medications weakly stimulate the nuclear receptor peroxisome proliferator-activated receptor-α (PPAR-α) and are currently employed clinically in patients with dyslipidaemia. The potent and selective agonist of PPAR-α LY518674 is known to substantially increase apolipoprotein A-I (apoA-I) turnover without major impact on steady-state levels of apoA-I or high-density lipoprotein-cholesterol (HDL-C). We sought to determine whether therapy with a PPAR-α agonist impacts cholesterol efflux capacity, a marker of HDL function. METHODS AND RESULTS: Cholesterol efflux capacity was measured at baseline and after 8 weeks of therapy in a randomized, placebo-controlled trial involving participants with metabolic syndrome treated with either LY518674 100 µg daily (n = 13) or placebo (n = 15). Efflux capacity assessment was quantified using a previously validated ex vivo assay that measures the ability of apolipoprotein-B depleted plasma to mobilize cholesterol from macrophages. LY518674 led to a 15.7% increase from baseline (95% CI 3.3-28.1%; P = 0.02, P vs. placebo = 0.01) in efflux capacity. The change in apoA-I production rate in the active treatment arm was strongly linked to change in cholesterol efflux capacity (r = 0.67, P = 0.01). CONCLUSIONS: Potent stimulation of PPAR-α leads to accelerated turnover of apoA-I and an increase in cholesterol efflux capacity in metabolic syndrome patients despite no change in HDL-C or apoA-I levels. This finding reinforces the notion that changes in HDL-C levels may poorly predict impact on functionality and thus has implications for ongoing pharmacologic efforts to enhance apoA-I metabolism.


Assuntos
HDL-Colesterol/metabolismo , Síndrome Metabólica/tratamento farmacológico , PPAR alfa/antagonistas & inibidores , Propionatos/uso terapêutico , Triazóis/uso terapêutico , Apolipoproteína A-I/metabolismo , Apolipoproteínas B/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
J Lipid Res ; 56(5): 972-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25652088

RESUMO

The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.


Assuntos
Apolipoproteína A-I/farmacologia , Cardiotônicos/farmacologia , Colesterol/metabolismo , Nanopartículas/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico , Linhagem Celular , Doença da Artéria Coronariana/tratamento farmacológico , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Ouro/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Mimetismo Molecular , Fosfolipídeos/farmacologia , Receptores Depuradores Classe B/metabolismo
20.
J Biol Chem ; 289(7): 4417-31, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24273168

RESUMO

The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic ß-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.


Assuntos
Proteínas de Transporte/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/metabolismo , Animais , Apoptose/fisiologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Fígado/citologia , Proteínas de Membrana/genética , Camundongos , PPAR alfa/genética , PPAR alfa/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Triglicerídeos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa