Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 24(1)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089244

RESUMO

Visual literacy, which is the ability to effectively identify, interpret, evaluate, use, and create images and visual media, is an important aspect of science literacy. As molecular processes are not directly observable, researchers and educators rely on visual representations (e.g., drawings) to communicate ideas in biology. How learners interpret and organize those numerous diagrams is related to their underlying knowledge about biology and their skills in visual literacy. Furthermore, it is not always obvious how and why learners interpret diagrams in the way they do (especially if their interpretations are unexpected), as it is not possible to "see" inside the minds of learners and directly observe the inner workings of their brains. Hence, tools that allow for the investigation of visual literacy are needed. Here, we present a novel card-sorting task based on visual literacy skills to investigate how learners interpret and think about DNA-based concepts. We quantified differences in performance between groups of varying expertise and in pre- and postcourse settings using percentages of expected card pairings and edit distance to a perfect sort. Overall, we found that biology experts organized the visual representations based on deep conceptual features, while biology learners (novices) more often organized based on surface features, such as color and style. We also found that students performed better on the task after a course in which molecular biology concepts were taught, suggesting the activity is a useful and valid tool for measuring knowledge. We have provided the cards to the community for use as a classroom activity, as an assessment instrument, and/or as a useful research tool to probe student ideas about molecular biology.

2.
Adv Nanobiomed Res ; 3(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37234365

RESUMO

Brain metastases are the most lethal progression event, in part because the biological processes underpinning brain metastases are poorly understood. There is a paucity of realistic models of metastasis, as current in vivo murine models are slow to manifest metastasis. We set out to delineate metabolic and secretory modulators of brain metastases by utilizing two models consisting of in vitro microfluidic devices: 1) a blood brain niche (BBN) chip that recapitulates the blood-brain-barrier and niche; and 2) a migration chip that assesses cell migration. We report secretory cues provided by the brain niche that attract metastatic cancer cells to colonize the brain niche region. Astrocytic Dkk-1 is increased in response to brain-seeking breast cancer cells and stimulates cancer cell migration. Brain-metastatic cancer cells under Dkk-1 stimulation increase gene expression of FGF-13 and PLCB1. Further, extracellular Dkk-1 modulates cancer cell migration upon entering the brain niche.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa