Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Ann Hepatol ; 25: 100333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33621653

RESUMO

INTRODUCTION AND OBJECTIVES: Hepatic encephalopathy (HE) is a complication of cirrhosis linked to the microbiome. We aimed to characterize the fecal microbiome of patients with prior and future overt HE, and explore the relationship between fecal species, short-chain fatty acids (SCFAs) and ammonia on HE pathogenesis. MATERIALS AND METHODS: Consecutive inpatients and outpatients with cirrhosis were recruited. A single stool sample was collected and underwent shallow shotgun sequencing, and SCFA and ammonia quantification. Patients were followed until the end of the study period. Prior and new overt HE was diagnosed by the treating hepatologist. RESULTS: Forty-nine patients with cirrhosis, mean MELD-Na 20 (SD = 9) and 33 (67%) with a history of OHE provided a stool sample. Over a median 85 days of follow up (interquartile range 34-181 days), 16 developed an OHE episode. Eight fecal bacterial species were associated with a history of OHE, and no species predicted future OHE. Bacterial species positively associated with SCFA content were inversely related to cirrhosis disease severity. Patients with a history of OHE had lower concentrations of 6 fecal SCFAs. Fecal ammonia concentrations were similar between those with and without a history of OHE (273 µmol/g ± 214 vs. 327 ±â€¯234, P = 0.43). CONCLUSIONS: We found 8 fecal species and 6 SCFAs linked to OHE. Many of the species inversely linked to OHE also have an association with SCFA production. Further work is needed to detail this relationship and to develop targeted interventions to treat HE.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Encefalopatia Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/microbiologia , Microbiota , Idoso , Amônia/metabolismo , Bactérias/isolamento & purificação , Estudos de Coortes , Feminino , Humanos , Cirrose Hepática/complicações , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
2.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692175

RESUMO

Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information have been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light. Based on the action spectrum of the growth effect and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.IMPORTANCE Sunlight provides information about both place and time. In sunlit aquatic environments, primary producers release organic carbon and nitrogen along with other growth factors during the day. The ability of Actinobacteria to coordinate organic carbon uptake and utilization with production of photosynthate enables them to grow more efficiently in the daytime, and it potentially gives them a competitive advantage over heterotrophs that constitutively produce carbohydrate transporters, which is energetically costly, or produce transporters only after detection of the substrate(s), which delays their response. Understanding how light cues the transport of organic carbon and its conversion to biomass is key to understanding biochemical mechanisms within the carbon cycle, the fluxes through it, and the variety of mechanisms by which light enhances growth.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Actinobacteria/efeitos da radiação , Metabolismo dos Carboidratos/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Criptocromos/metabolismo
3.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29703736

RESUMO

Although sunlight is an abundant source of energy in surface environments, less than 0.5% of the available photons are captured by (bacterio)chlorophyll-dependent photosynthesis in plants and bacteria. Metagenomic data indicate that 30 to 60% of the bacterial genomes in some environments encode rhodopsins, retinal-based photosystems found in heterotrophs, suggesting that sunlight may provide energy for more life than previously suspected. However, quantitative data on the number of cells that produce rhodopsins in environmental systems are limited. Here, we use total internal reflection fluorescence microscopy to show that the number of free-living microbes that produce rhodopsins increases along the salinity gradient in the Chesapeake Bay. We correlate this functional data with environmental data to show that rhodopsin abundance is positively correlated with salinity and with indicators of active heterotrophy during the day. Metagenomic and metatranscriptomic data suggest that the microbial rhodopsins in the low-salinity samples are primarily found in Actinobacteria and Bacteroidetes, while those in the high-salinity samples are associated with SAR-11 type AlphaproteobacteriaIMPORTANCE Microbial rhodopsins are common light-activated ion pumps in heterotrophs, and previous work has proposed that heterotrophic microbes use them to conserve energy when organic carbon is limiting. If this hypothesis is correct, rhodopsin-producing cells should be most abundant where nutrients are most limited. Our results indicate that in the Chesapeake Bay, rhodopsin gene abundance is correlated with salinity, and functional rhodopsin production is correlated with nitrate, bacterial production, and chlorophyll a We propose that in this environment, where carbon and nitrogen are likely not limiting, heterotrophs do not need to use rhodopsins to supplement ATP synthesis. Rather, the light-generated proton motive force in nutrient-rich environments could be used to power energy-dependent membrane-associated processes, such as active transport of organic carbon and cofactors, enabling these organisms to more efficiently utilize exudates from primary producers.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Baías/microbiologia , Rodopsina/biossíntese , Rodopsina/genética , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Carbono/análise , Clorofila A , Delaware , Microbiologia Ambiental , Estuários , Genoma Bacteriano , Processos Heterotróficos , Luz , Metagenômica , Nitrogênio/análise , Filogenia , Rodopsinas Microbianas/classificação , Salinidade , Transcriptoma
4.
Food Chem Toxicol ; 191: 114839, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942165

RESUMO

The human gut microbiome plays a crucial role in immune function. The synbiotic consortium or Defined Microbial Assemblage™ (DMA™) Medical Food product, SBD121, consisting of probiotic microbes and prebiotic fibers was designed for the clinical dietary management of rheumatoid arthritis. A 28-day repeated administration study was performed to evaluate the oral toxicity of SBD121 in male and female rats (age/weight at study start: 60 days/156-264 g) administered levels of 0, 4.96 x 1010, 2.48 x 1011, or 4.96 x 1011 colony forming units (CFU)/kg-bw. No treatment related changes were observed in ophthalmological effects, mortality, morbidity, general health and clinical observations, urinalysis, hematology, serum chemistry, absolute or relative organ weights, gross necropsy, or histopathology. A significant decrease in body weight was reported in females in the low and high-concentration groups, which corresponded in part with a significant decrease in food consumption. Results of the functional observation battery indicated front grip strength was significantly greater in the high-concentration males compared to the controls; however, this effect was not considered adverse. Based on these findings, the administration of the Medical Food SBD121 to male and female rats has a no-observable adverse effect level (NOAEL) at the highest level tested of 4.96 x 1011 CFU/kg-bw.

5.
Curr Protoc Microbiol ; 41: 1F.4.1-1F.4.18, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27153387

RESUMO

Ion-pumping rhodopsins transfer ions across the microbial cell membrane in a light-dependent fashion. As the rate of biochemical characterization of microbial rhodopsins begins to catch up to the rate of microbial rhodopsin identification in environmental and genomic sequence data sets, in vitro analysis of their light-absorbing properties and in vivo analysis of ion pumping will remain critical to characterizing these proteins. As we learn more about the variety of physiological roles performed by microbial rhodopsins in different cell types and environments, observing the localization patterns of the rhodopsins and/or quantifying the number of rhodopsin-bearing cells in natural environments will become more important. Here, we provide protocols for purification of rhodopsin-containing membranes, detection of ion pumping, and observation of functional rhodopsins in laboratory and environmental samples using total internal reflection fluorescence microscopy. © 2016 by John Wiley & Sons, Inc.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/metabolismo , Microscopia de Fluorescência/métodos , Rodopsinas Microbianas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/genética , Bombas de Próton/análise , Bombas de Próton/genética , Bombas de Próton/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/isolamento & purificação , Rodopsinas Microbianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa