Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cell ; 176(1-2): 127-143.e24, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633903

RESUMO

DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.


Assuntos
Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Bactérias/metabolismo , Instabilidade Cromossômica/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Instabilidade Genômica , Humanos , Proteínas de Membrana Transportadoras/fisiologia , Mutagênese , Mutação , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 82(21): 4001-4017.e7, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265488

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.


Assuntos
RNA Longo não Codificante , Homeostase do Telômero , Cromatina/genética , Proteômica , Telômero/genética , Telômero/metabolismo , RNA Longo não Codificante/genética , Homeostase
3.
Mol Cell ; 80(2): 327-344.e8, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966758

RESUMO

Stabilization of stalled replication forks is a prominent mechanism of PARP (Poly(ADP-ribose) Polymerase) inhibitor (PARPi) resistance in BRCA-deficient tumors. Epigenetic mechanisms of replication fork stability are emerging but remain poorly understood. Here, we report the histone acetyltransferase PCAF (p300/CBP-associated) as a fork-associated protein that promotes fork degradation in BRCA-deficient cells by acetylating H4K8 at stalled replication forks, which recruits MRE11 and EXO1. A H4K8ac binding domain within MRE11/EXO1 is required for their recruitment to stalled forks. Low PCAF levels, which we identify in a subset of BRCA2-deficient tumors, stabilize stalled forks, resulting in PARPi resistance in BRCA-deficient cells. Furthermore, PCAF activity is tightly regulated by ATR (ataxia telangiectasia and Rad3-related), which phosphorylates PCAF on serine 264 (S264) to limit its association and activity at stalled forks. Our results reveal PCAF and histone acetylation as critical regulators of fork stability and PARPi responses in BRCA-deficient cells, which provides key insights into targeting BRCA-deficient tumors and identifying epigenetic modulators of chemotherapeutic responses.


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Histonas/metabolismo , Proteína Homóloga a MRE11/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lisina/metabolismo , Modelos Biológicos , Mutação/genética , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/genética
4.
Genes Dev ; 33(23-24): 1751-1774, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753913

RESUMO

Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.


Assuntos
Instabilidade Genômica , Estruturas R-Loop , Reparo de DNA por Recombinação/genética , Fatores de Transcrição/genética , Acetilação , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Células HEK293 , Células HeLa , Humanos , Transativadores/metabolismo , Fatores de Transcrição/análise , Ubiquitinação , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
5.
Nucleic Acids Res ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38936834

RESUMO

R-loops cause genome instability, disrupting normal cellular functions. Histone acetylation, particularly by p300/CBP-associated factor (PCAF), is essential for maintaining genome stability and regulating cellular processes. Understanding how R-loop formation and resolution are regulated is important because dysregulation of these processes can lead to multiple diseases, including cancer. This study explores the role of PCAF in maintaining genome stability, specifically for R-loop resolution. We found that PCAF depletion promotes the generation of R-loop structures, especially during ongoing transcription, thereby compromising genome stability. Mechanistically, we found that PCAF facilitates histone H4K8 acetylation, leading to recruitment of the a double-strand break repair protein (MRE11) and exonuclease 1 (EXO1) to R-loop sites. These in turn recruit Fanconi anemia (FA) proteins, including FANCM and BLM, to resolve the R-loop structure. Our findings suggest that PCAF, histone acetylation, and FA proteins collaborate to resolve R-loops and ensure genome stability. This study therefore provides novel mechanistic insights into the dynamics of R-loops as well as the role of PCAF in preserving genome stability. These results may help develop therapeutic strategies to target diseases associated with genome instability.


R-loops are harmful DNA-RNA hybrid structures that cause genome instability, disrupting normal cell functions. This study explored the role of the protein PCAF in resolving R-loops to maintain genome stability. The researchers found that depleting PCAF leads to increased R-loop formation, especially during transcription, compromising the genome. Mechanistically, PCAF facilitates histone acetylation, recruiting proteins like MRE11, EXO1, FANCM and BLM to R-loop sites. These proteins collaborate to resolve R-loop structures. The findings suggest that PCAF, histone acetylation, and these repair proteins work together to untangle R-loops and preserve genome integrity. Understanding this process provides insights into R-loop dynamics and PCAF's role in genome maintenance, potentially leading to therapeutic strategies for diseases associated with genome instability, such as cancer.

6.
Semin Cell Dev Biol ; 135: 59-72, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35331626

RESUMO

Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.


Assuntos
Cromatina , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Genoma , Processamento de Proteína Pós-Traducional/genética , DNA/genética
7.
Nucleic Acids Res ; 51(9): 4429-4450, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37070200

RESUMO

The long interspersed element 1 (LINE-1 or L1) integration is affected by many cellular factors through various mechanisms. Some of these factors are required for L1 amplification, while others either suppress or enhance specific steps during L1 propagation. Previously, TRIM28 has been identified to suppress transposable elements, including L1 expression via its canonical role in chromatin remodeling. Here, we report that TRIM28 through its B box domain increases L1 retrotransposition and facilitates shorter cDNA and L1 insert generation in cultured cells. Consistent with the latter, we observe that tumor specific L1 inserts are shorter in endometrial, ovarian, and prostate tumors with higher TRIM28 mRNA expression than in those with lower TRIM28 expression. We determine that three amino acids in the B box domain that are involved in TRIM28 multimerization are critical for its effect on both L1 retrotransposition and cDNA synthesis. We provide evidence that B boxes from the other two members in the Class VI TRIM proteins, TRIM24 and TRIM33, also increase L1 retrotransposition. Our findings could lead to a better understanding of the host/L1 evolutionary arms race in the germline and their interplay during tumorigenesis.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteína 28 com Motivo Tripartido , DNA Complementar/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Humanos , Proteína 28 com Motivo Tripartido/genética
8.
Genes Dev ; 31(3): 260-274, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242625

RESUMO

Chromatin connects DNA damage response factors to sites of damaged DNA to promote the signaling and repair of DNA lesions. The histone H2A variants H2AX, H2AZ, and macroH2A represent key chromatin constituents that facilitate DNA repair. Through proteomic screening of these variants, we identified ZMYM3 (zinc finger, myeloproliferative, and mental retardation-type 3) as a chromatin-interacting protein that promotes DNA repair by homologous recombination (HR). ZMYM3 is recruited to DNA double-strand breaks through bivalent interactions with both histone and DNA components of the nucleosome. We show that ZMYM3 links the HR factor BRCA1 to damaged chromatin through specific interactions with components of the BRCA1-A subcomplex, including ABRA1 and RAP80. By regulating ABRA1 recruitment to damaged chromatin, ZMYM3 facilitates the fine-tuning of BRCA1 interactions with DNA damage sites and chromatin. Consistent with a role in regulating BRCA1 function, ZMYM3 deficiency results in impaired HR repair and genome instability. Thus, our work identifies a critical chromatin-binding DNA damage response factor, ZMYM3, which modulates BRCA1 functions within chromatin to ensure the maintenance of genome integrity.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias Ósseas/metabolismo , Cromatina/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Sequência de Aminoácidos , Proteína BRCA1/genética , Neoplasias Ósseas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Instabilidade Genômica , Células HEK293 , Chaperonas de Histonas , Histonas/genética , Histonas/metabolismo , Recombinação Homóloga , Humanos , Proteínas Nucleares/genética , Osteossarcoma/genética , Homologia de Sequência de Aminoácidos , Células Tumorais Cultivadas
9.
Bioessays ; 44(7): e2200015, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35532219

RESUMO

The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo
10.
Nucleic Acids Res ; 50(7): 3922-3943, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35253893

RESUMO

An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.


Assuntos
Proteína BRCA1 , Reparo do DNA , Recombinação Homóloga , Fatores de Transcrição , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(31): 18439-18447, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675241

RESUMO

In mammals, repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3), frequently coexist with DNA methylation, producing a more stable and silenced chromatin state. However, it remains elusive how these epigenetic modifications crosstalk. Here, through structural and biochemical characterizations, we identified the replication foci targeting sequence (RFTS) domain of maintenance DNA methyltransferase DNMT1, a module known to bind the ubiquitylated H3 (H3Ub), as a specific reader for H3K9me3/H3Ub, with the recognition mode distinct from the typical trimethyl-lysine reader. Disruption of the interaction between RFTS and the H3K9me3Ub affects the localization of DNMT1 in stem cells and profoundly impairs the global DNA methylation and genomic stability. Together, this study reveals a previously unappreciated pathway through which H3K9me3 directly reinforces DNMT1-mediated maintenance DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Heterocromatina/metabolismo , Histonas/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Heterocromatina/genética , Histonas/química , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional
12.
Genes Dev ; 29(2): 197-211, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25593309

RESUMO

How chromatin shapes pathways that promote genome-epigenome integrity in response to DNA damage is an issue of crucial importance. We report that human bromodomain (BRD)-containing proteins, the primary "readers" of acetylated chromatin, are vital for the DNA damage response (DDR). We discovered that more than one-third of all human BRD proteins change localization in response to DNA damage. We identified ZMYND8 (zinc finger and MYND [myeloid, Nervy, and DEAF-1] domain containing 8) as a novel DDR factor that recruits the nucleosome remodeling and histone deacetylation (NuRD) complex to damaged chromatin. Our data define a transcription-associated DDR pathway mediated by ZMYND8 and the NuRD complex that targets DNA damage, including when it occurs within transcriptionally active chromatin, to repress transcription and promote repair by homologous recombination. Thus, our data identify human BRD proteins as key chromatin modulators of the DDR and provide novel insights into how DNA damage within actively transcribed regions requires chromatin-binding proteins to orchestrate the appropriate response in concordance with the damage-associated chromatin context.


Assuntos
Cromatina/metabolismo , Dano ao DNA , Recombinação Homóloga/genética , Receptores de Superfície Celular/metabolismo , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Ligação Proteica , Transporte Proteico/genética , Receptores de Quinase C Ativada , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor
13.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983041

RESUMO

Genetic mutations or environmental agents are major contributors to leukemia and are associated with genomic instability. R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and a non-template single-stranded DNA. These structures regulate various cellular processes, including transcription, replication, and DSB repair. However, unregulated R-loop formation can cause DNA damage and genomic instability, which are potential drivers of cancer including leukemia. In this review, we discuss the current understanding of aberrant R-loop formation and how it influences genomic instability and leukemia development. We also consider the possibility of R-loops as therapeutic targets for cancer treatment.


Assuntos
Leucemia , Estruturas R-Loop , Humanos , Transcrição Gênica , Reparo do DNA , RNA/genética , Replicação do DNA , Leucemia/genética , Instabilidade Genômica
14.
Crit Rev Biochem Mol Biol ; 54(3): 208-241, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31164001

RESUMO

Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , Código das Histonas , Animais , Cromatina/genética , Epigênese Genética , Instabilidade Genômica , Histonas/genética , Humanos , Neoplasias/genética
15.
Trends Genet ; 34(4): 313-325, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29370947

RESUMO

Zinc finger (ZnF) domains are present in at least 5% of human proteins. First characterized as binding to DNA, ZnFs display extraordinary binding plasticity and can bind to RNA, lipids, proteins, and protein post-translational modifications (PTMs). The diverse binding properties of ZnFs have made their functional characterization challenging. While once confined to large and poorly characterized protein families, proteomic, cellular, and molecular studies have begun to shed light on their involvement as protectors of the genome. We focus here on the emergent roles of ZnF domain-containing proteins in promoting genome integrity, including their involvement in telomere maintenance and DNA repair. These findings have highlighted the need for further characterization of ZnF proteins, which can reveal the functions of this large gene class in normal cell function and human diseases, including those involving genome instability such as aging and cancer.


Assuntos
Envelhecimento/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Homeostase do Telômero , Dedos de Zinco/genética , Envelhecimento/metabolismo , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Instabilidade Genômica , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , RNA/genética , RNA/metabolismo
16.
Nature ; 518(7538): 254-7, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25642960

RESUMO

The alternative non-homologous end-joining (NHEJ) machinery facilitates several genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions. Using next-generation sequencing technology, here we show that repair by alternative NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify polymerase theta (Polθ; encoded by Polq in mice) as a crucial alternative NHEJ factor in mammalian cells. Polq inhibition suppresses alternative NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that loss of Polq in mice results in increased rates of homology-directed repair, evident by recombination of dysfunctional telomeres and accumulation of RAD51 at double-stranded breaks. Lastly, we show that depletion of Polθ has a synergistic effect on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumours carrying mutations in homology-directed repair genes.


Assuntos
Cromossomos de Mamíferos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Genética , Telômero/genética , Telômero/metabolismo , Animais , Sequência de Bases , Morte Celular/genética , Linhagem Celular , Aberrações Cromossômicas , Cromossomos de Mamíferos/genética , DNA Polimerase Dirigida por DNA/deficiência , Genes BRCA1 , Genes BRCA2 , Células HeLa , Humanos , Camundongos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Rad51 Recombinase/metabolismo , Recombinação Genética/genética , Reparo de DNA por Recombinação/genética , Translocação Genética/genética , DNA Polimerase teta
17.
Nat Rev Genet ; 15(12): 783-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25311424

RESUMO

Small molecules--including various approved and novel cancer therapeutics--can operate at the genomic level by targeting the DNA and protein components of chromatin. Emerging evidence suggests that functional interactions between small molecules and the genome are non-stochastic and are influenced by a dynamic interplay between DNA sequences and chromatin states. The establishment of genome-wide maps of small-molecule targets using unbiased methodologies can help to characterize and exploit drug responses. In this Review, we discuss how high-throughput sequencing strategies, such as ChIP-seq (chromatin immunoprecipitation followed by sequencing) and Chem-seq (chemical affinity capture and massively parallel DNA sequencing), are enabling the comprehensive identification of small-molecule target sites throughout the genome, thereby providing insights into unanticipated drug effects.


Assuntos
Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica/genética , Animais , Imunoprecipitação da Cromatina , Epigênese Genética/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Bibliotecas de Moléculas Pequenas
18.
PLoS Genet ; 12(9): e1006272, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27631103

RESUMO

Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.


Assuntos
Dano ao DNA/genética , Epigênese Genética , Histona Desacetilases/genética , Neoplasias/genética , Acetilação , Cromatina/genética , Genoma Humano , Instabilidade Genômica , Histona Acetiltransferases/genética , Humanos
19.
Proc Natl Acad Sci U S A ; 113(9): E1170-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884156

RESUMO

Exonuclease 1 (Exo1) is a 5'→3' exonuclease and 5'-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imaging and quantitative cell biology approaches to reveal the interplay between Exo1 and SSBs. Both human and yeast Exo1 are processive nucleases on their own. RPA rapidly strips Exo1 from DNA, and this activity is dependent on at least three RPA-encoded single-stranded DNA binding domains. Furthermore, we show that ablation of RPA in human cells increases Exo1 recruitment to damage sites. In contrast, the sensor of single-stranded DNA complex 1-a recently identified human SSB that promotes DNA resection during homologous recombination-supports processive resection by Exo1. Although RPA rapidly turns over Exo1, multiple cycles of nuclease rebinding at the same DNA site can still support limited DNA processing. These results reveal the role of single-stranded DNA binding proteins in controlling Exo1-catalyzed resection with implications for how Exo1 is regulated during DNA repair in eukaryotic cells.


Assuntos
Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Exodesoxirribonucleases/fisiologia , Biocatálise , Dano ao DNA , Humanos , Saccharomyces cerevisiae/metabolismo
20.
EMBO Rep ; 16(12): 1699-712, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26508657

RESUMO

We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ubiquitin-Activated Interaction Traps) are E3-ubiquitin fusion proteins and, in an E1- and E2-dependent manner, the C-terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co-purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester-linked lariat intermediate or through an E2 thioester intermediate, and both WT and active-site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double-strand break repair. Using the RNF168 UBAIT, we identify H2AZ--a histone protein involved in DNA repair--as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Reparo do DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Histonas/genética , Humanos , Mutação , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição , Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa