Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 28(20): 4494-4508, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36161312

RESUMO

PURPOSE: To identify potential immune targets in post-neoadjuvant chemotherapy (NAC)-resistant triple-negative breast cancer (TNBC) and ER+HER2- breast cancer disease. EXPERIMENTAL DESIGN: Following pathology review, 153 patients were identified as having residual cancer burden (RCB) II/III disease (TNBC n = 80; ER+HER2-n = 73). Baseline pre-NAC samples were available for evaluation for 32 of 80 TNBC and 36 of 73 ER+HER2- cases. Bright-field hematoxylin and eosin assessment allowed for tumor-infiltrating lymphocyte (TIL) evaluation in all cases. Multiplexed immunofluorescence was used to identify the abundance and distribution of immune cell subsets. Levels of checkpoints including PD-1/PD-L1 expression were also quantified. Findings were then validated using expression profiling of cancer and immune-related genes. Cytometry by time-of-flight characterized the dynamic changes in circulating immune cells with NAC. RESULTS: RCB II/III TNBC and ER+HER2- breast cancer were immunologically "cold" at baseline and end of NAC. Although the distribution of immune cell subsets across subtypes was similar, the mRNA expression profiles were both subtype- and chemotherapy-specific. TNBC RCB II/III disease was enriched with genes related to neutrophil degranulation, and displayed strong interplay across immune and cancer pathways. We observed similarities in the dynamic changes in B-cell biology following NAC irrespective of subtype. However, NAC induced changes in the local and circulating tumor immune microenvironment (TIME) that varied by subtype and response. Specifically, in TNBC residual disease, we observed downregulation of stimulatory (CD40/OX40L) and inhibitory (PD-L1/PD-1) receptor expression and an increase in NK cell populations (especially non-cytolytic, exhausted CD56dimCD16-) within both the local TIME and peripheral white cell populations. CONCLUSIONS: This study identifies several potential immunologic pathways in residual disease, which may be targeted to benefit high-risk patients.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Antígeno B7-H1/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Amarelo de Eosina-(YS)/uso terapêutico , Feminino , Hematoxilina , Humanos , Terapia Neoadjuvante , Neutrófilos/metabolismo , Receptor de Morte Celular Programada 1/uso terapêutico , RNA Mensageiro , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
2.
Mol Cancer Ther ; 19(7): 1423-1435, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32371585

RESUMO

KRAS mutation is a key driver of pancreatic cancer and PI3K pathway activity is an additional requirement for Kras-induced tumorigenesis. Clinical trials of PI3K pathway inhibitors in pancreatic cancer have shown limited responses. Understanding the molecular basis for this lack of efficacy may direct future treatment strategies with emerging PI3K inhibitors. We sought new therapeutic approaches that synergize with PI3K inhibitors through pooled CRISPR modifier genetic screening and a drug combination screen. ERBB family receptor tyrosine kinase signaling and mTOR signaling were key modifiers of sensitivity to alpelisib and pictilisib. Inhibition of the ERBB family or mTOR was synergistic with PI3K inhibition in spheroid, stromal cocultures. Near-complete loss of ribosomal S6 phosphorylation was associated with synergy. Genetic alterations in the ERBB-PI3K signaling axis were associated with decreased survival of patients with pancreatic cancer. Suppression of the PI3K/mTOR axis is potentiated by dual PI3K and ERBB family or mTOR inhibition. Surprisingly, despite the presence of oncogenic KRAS, thought to bestow independence from receptor tyrosine kinase signaling, inhibition of the ERBB family blocks downstream pathway activation and synergizes with PI3K inhibitors. Further exploration of these therapeutic combinations is warranted for the treatment of pancreatic cancer.


Assuntos
Sistemas CRISPR-Cas , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Serina-Treonina Quinases TOR/genética , Apoptose , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Genoma Humano , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/química , Fosforilação , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa