Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083497

RESUMO

Neonicotinoids, a class of systemic insecticides, have been widely used for decades against various insect pests. Previous studies have reported non-target effects of neonicotinoids on some beneficial macro- and micro-organisms. Considering the crucial role the soil microbiota plays in sustaining soil fertility, it is critical to understand how neonicotinoid exposure affects the microbial taxonomic composition and gene expression. However, most studies to date have evaluated soil microbial taxonomic compositions or assessed microbial functions based on soil biochemical analysis. In this study, we have applied a metatranscriptomic approach to quantify the variability in soil microbial gene expression in a 2 year soybean/corn crop rotation in Quebec, Canada. We identified weak and temporally inconsistent effects of neonicotinoid application on soil microbial gene expression, as well as a strong temporal variation in soil microbial gene expression among months and years. Neonicotinoid seed treatment altered the expression of a small number of microbial genes, including genes associated with heat shock proteins, regulatory functions, metabolic processes and DNA repair. These changes in gene expression varied during the growing season and between years. Overall, the composition of soil microbial expressed genes seems to be more resilient and less affected by neonicotinoid application than soil microbial taxonomic composition. Our study is among the first to document the effects of neonicotinoid seed treatment on microbial gene expression and highlights the strong temporal variability of soil microbial gene expression and its responses to neonicotinoid seed treatments.


Assuntos
Inseticidas , Microbiota , Neonicotinoides/farmacologia , Neonicotinoides/análise , Solo/química , Microbiologia do Solo , Inseticidas/farmacologia , Inseticidas/análise , Sementes/genética , Sementes/química , Genes Microbianos , Expressão Gênica
2.
RNA Biol ; 20(1): 614-628, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37599428

RESUMO

The soybean cyst nematode (SCN - Heterodera glycines) is one of the most damaging pests to the cultivated soybean worldwide. Using a wide array of stylet-secreted effector proteins, this nematode can restructure its host cells into a complex and highly active feeding structure called the syncytium. Tight regulation of these proteins is thought to be essential to the successful formation of this syncytium. To date, multiple mechanisms have been proposed to regulate the expression of these proteins including through post-transcriptional regulation. MicroRNAs (miRNAs) are a class of small, roughly 22-nucleotide-long, non-coding RNA shown to regulate gene expression through its interaction with the 3' untranslated region of genes. These same small RNAs have also been hypothesized to be able to cross over kingdom barriers and regulate genes in other species in a process called cross-kingdom interactions. In this study, we characterized the miRNome of the SCN via sequencing of small-RNAs isolated from whole nematodes and exosomes representing all developmental stages. We identified 121 miRNA loci encoding 96 distinct miRNA families including multiple lineage- and species-specific candidates. Using a combination of plant- and animal-specific miRNA target predictors, we generated a unique repertoire of miRNA:mRNA interacting partners in the nematode and its host plant leading to the identification of a set of nine probable cross-kingdom miRNA candidates.


Assuntos
Cistos , MicroRNAs , Nematoides , RNA Longo não Codificante , Pequeno RNA não Traduzido , Animais , MicroRNAs/genética , Glycine max/genética , Regiões 3' não Traduzidas , Nematoides/genética , Glicina
3.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298400

RESUMO

The soybean cyst nematode (Heterodera glycines, SCN), is the most damaging disease of soybean in North America. While management of this pest using resistant soybean is generally still effective, prolonged exposure to cultivars derived from the same source of resistance (PI 88788) has led to the emergence of virulence. Currently, the underlying mechanisms responsible for resistance breakdown remain unknown. In this study, we combined a single nematode transcriptomic profiling approach with long-read sequencing to reannotate the SCN genome. This resulted in the annotation of 1932 novel transcripts and 281 novel gene features. Using a transcript-level quantification approach, we identified eight novel effector candidates overexpressed in PI 88788 virulent nematodes in the late infection stage. Among these were the novel gene Hg-CPZ-1 and a pioneer effector transcript generated through the alternative splicing of the non-effector gene Hetgly21698. While our results demonstrate that alternative splicing in effectors does occur, we found limited evidence of direct involvement in the breakdown of resistance. However, our analysis highlighted a distinct pattern of effector upregulation in response to PI 88788 resistance indicative of a possible adaptation process by SCN to host resistance.


Assuntos
Cistos , Nematoides , Tylenchoidea , Animais , Glycine max/genética , Transcriptoma , Virulência/genética , Nematoides/genética , Tylenchoidea/fisiologia , Doenças das Plantas/genética
4.
J Nematol ; 54(1): 20220047, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36742265

RESUMO

Bradynema listronoti is an insect-parasitic nematode known to infect the carrot weevil, Listronotus oregonensis. We present the first sequence for this species and for any Allantonematidae, produced with a combination of short and long reads. The draft genome of B. listronoti is 80.6 Mb in size, assembled in 152 scaffolds.

5.
Phytopathology ; 111(5): 886-889, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33200961

RESUMO

The potato cyst nematode Globodera rostochiensis is a regulated pest posing a serious threat to potato production worldwide. Although the endemic pathotype (Ro1) of G. rostochiensis has been confined to New York State for several decades as a result of quarantine regulations and management with resistant potato cultivars, a virulent pathotype, Ro2, has emerged, for which control measures are scarce. The ability to detect Ro2 early in fields is necessary to sustain the success of G. rostochiensis quarantine in the United States. Here, we report the comparative analysis of whole-genome sequences of multiple single-cyst-derived Ro1 and Ro2 lines, propagated from original field populations. The identified discriminant variants are good targets for developing molecular diagnostic tools for differentiating G. rostochiensis pathotypes in New York.


Assuntos
Solanum tuberosum , Tylenchoidea , Animais , New York , Doenças das Plantas , Tylenchoidea/genética
6.
Phytopathology ; 111(1): 137-148, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33100145

RESUMO

Soybean cyst nematode (SCN) is one of the most important diseases in soybean. Currently, the main management strategy relies on planting resistant cultivars. However, the overuse of a single resistance source has led to the selection of virulent SCN populations, although the mechanisms by which the nematode overcomes the resistance genes remain unknown. In this study, we used a nematode-adapted single-cell RNA-seq approach to identify SCN genes potentially involved in resistance breakdown in Peking and PI 88788 parental soybean lines. We established for the first time the full transcriptome of single SCN individuals allowing us to identify a list of putative virulence genes against both major SCN resistance sources. Our analysis identified 48 differentially expressed putative effectors (secreted proteins required for infection) alongside 40 effectors showing evidence of novel structural variants, and 11 effector genes containing phenotype-specific sequence polymorphisms. Additionally, a differential expression analysis revealed an interesting phenomenon of coexpressed gene regions with some containing putative effectors. The selection of virulent SCN individuals on Peking resulted in a profoundly altered transcriptome, especially for genes known to be involved in parasitism. Several sequence polymorphisms were also specific to these virulent nematodes and could potentially play a role in the acquisition of nematode virulence. On the other hand, the transcriptome of virulent individuals on PI 88788 was very similar to avirulent ones with the exception of a few genes, which suggest a distinct virulence strategy to Peking.


Assuntos
Cistos , Tylenchoidea , Animais , Genômica , Doenças das Plantas , Glycine max , Tylenchoidea/genética , Virulência
7.
Phytopathology ; 111(1): 40-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33151824

RESUMO

Plant-parasitic nematodes are a costly burden of crop production. Ubiquitous in nature, phytoparasitic nematodes are associated with nearly every important agricultural crop and represent a significant constraint on global food security. Population genetics is a key discipline in plant nematology to understand aspects of the life strategies of these parasites, in particular their modes of reproduction, geographic origins, evolutionary histories, and dispersion abilities. Advances in high-throughput sequencing technologies have enabled a recent but active effort in genomic analyses of plant-parasitic nematodes. Such genomic approaches applied to multiple populations are providing new insights into the molecular and evolutionary processes that underpin the establishment of these nematodes and into a better understanding of the genetic and mechanistic basis of their pathogenicity and adaptation to their host plants. In this review, we attempt to update information about genome resources and genotyping techniques useful for nematologists who are thinking about initiating population genomics or genome sequencing projects. This review is intended also to foster the development of population genomics in plant-parasitic nematodes through highlighting recent publications that illustrate the potential for this approach to identify novel molecular markers or genes of interest and improve our knowledge of the genome variability, pathogenicity, and evolutionary potential of plant-parasitic nematodes.


Assuntos
Nematoides , Parasitos , Animais , Metagenômica , Nematoides/genética , Doenças das Plantas , Plantas
8.
J Nematol ; 52: 1-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421266

RESUMO

Root lesion nematode virus 1 (RLNV1) was discovered in the migratory endoparasitic nematode species Pratylenchus penetrans. It was found in a P. penetrans population collected from soil samples in Beltsville, Maryland, USA. In this study, the distribution of the RLNV1 in 31 geographically distinct P. penetrans populations obtained from different crops was examined. The results demonstrate that RLNV1 is widespread in North American populations of P. penetrans and exhibits low genetic variability in the helicase and RNA-dependent RNA polymerase regions of the genome.Root lesion nematode virus 1 (RLNV1) was discovered in the migratory endoparasitic nematode species Pratylenchus penetrans. It was found in a P. penetrans population collected from soil samples in Beltsville, Maryland, USA. In this study, the distribution of the RLNV1 in 31 geographically distinct P. penetrans populations obtained from different crops was examined. The results demonstrate that RLNV1 is widespread in North American populations of P. penetrans and exhibits low genetic variability in the helicase and RNA-dependent RNA polymerase regions of the genome.

9.
BMC Genomics ; 20(1): 457, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170914

RESUMO

BACKGROUND: In hyperspecialized parasites, the ability to grow on a particular host relies on specific virulence factors called effectors. These excreted proteins are involved in the molecular mechanisms of parasitism and distinguish virulent pathogens from non-virulent related species. The potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida are major plant-parasitic nematodes developing on numerous solanaceous species including potato. Their close relatives, G. tabacum and G. mexicana are stimulated by potato root diffusate but unable to establish a feeding site on this plant host. RESULTS: RNA sequencing was used to characterize transcriptomic differences among these four Globodera species and to identify genes associated with host specificity. We identified seven transcripts that were unique to PCN species, including a protein involved in ubiquitination. We also found 545 genes that were differentially expressed between PCN and non-PCN species, including 78 genes coding for effector proteins, which represent more than a 6-fold enrichment compared to the whole transcriptome. Gene polymorphism analysis identified 359 homozygous non-synonymous variants showing a strong evidence for selection in PCN species. CONCLUSIONS: Overall, we demonstrated that the determinant of host specificity resides in the regulation of essential effector gene expression that could be under the control of a single or of very few regulatory genes. Such genes are therefore promising targets for the development of novel and more sustainable resistances against potato cyst nematodes.


Assuntos
Solanum tuberosum/parasitologia , Tylenchoidea/genética , Animais , Perfilação da Expressão Gênica , Variação Genética , Especificidade de Hospedeiro/genética , Reação em Cadeia da Polimerase , Análise de Sequência de RNA , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidade
10.
BMC Genomics ; 20(1): 119, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732586

RESUMO

BACKGROUND: Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations. The parasitic success of H. glycines relies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms of effector acquisition, diversification, and selection need to be understood before effective control strategies can be developed, but the lack of an annotated genome has been a major roadblock. RESULTS: Here, we use PacBio long-read technology to assemble a H. glycines genome of 738 contigs into 123 Mb with annotations for 29,769 genes. The genome contains significant numbers of repeats (34%), tandem duplicates (18.7 Mb), and horizontal gene transfer events (151 genes). A large number of putative effectors (431 genes) were identified in the genome, many of which were found in transposons. CONCLUSIONS: This advance provides a glimpse into the host and parasite interplay by revealing a diversity of mechanisms that give rise to virulence genes in the soybean cyst nematode, including: tandem duplications containing over a fifth of the total gene count, virulence genes hitchhiking in transposons, and 107 horizontal gene transfers not reported in other plant parasitic nematodes thus far. Through extensive characterization of the H. glycines genome, we provide new insights into H. glycines biology and shed light onto the mystery underlying complex host-parasite interactions. This genome sequence is an important prerequisite to enable work towards generating new resistance or control measures against H. glycines.


Assuntos
Evolução Molecular , Duplicação Gênica , Genômica , Glycine max/parasitologia , Tylenchoidea/genética , Tylenchoidea/fisiologia , Animais , Genótipo , Interações Hospedeiro-Parasita , Anotação de Sequência Molecular , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
12.
Plant Cell Environ ; 42(3): 815-831, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30481398

RESUMO

Ultraviolet-C (UV-C) radiation has been reported to induce defence responses to pathogens in growing crops and described as a new environmentally friendly method for disease control. However, whether the effect of the induced defence mechanisms will persist after the stress imposed by UV-C is alleviated and how these mechanisms interact with pathogen elicitors upon infection have not yet been investigated. Thus, we inoculated strawberry plants with Mycosphaerella fragariae, the causal agent of leaf spot disease, after 5 weeks of repeated UV-C irradiation treatment (cumulative dose of 10.2 kJ m-2 ) and investigated the alteration of gene expression and biochemical phenotypes. The results revealed that UV-C treatment had a significant impact on gene expression in strawberry leaves and led to the overexpression of a set of genes involved in plant-pathogen interaction. UV-C-treated leaves displayed a stronger response to infection after inoculation, with reduced symptoms and increases in accumulation of total phenolics and volatile terpenes, higher expression of pathogenesis-related proteins and the activity of several defence enzymes. This study presumptively describe, for the first time, the involvement of terpenes, reactive oxygen species, and abscisic acid, salicylic acid, jasmonic acid, and their transduction factors, in the network underpinning UV-C priming of growing crops for improved protection against pathogens.


Assuntos
Ascomicetos , Fragaria/efeitos da radiação , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Terpenos/metabolismo , Raios Ultravioleta , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/efeitos da radiação , Fragaria/metabolismo , Fragaria/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
13.
Parasitology ; 146(6): 702-707, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30567618

RESUMO

Bradynema listronoti is a parasitic nematode described from infected specimens of the carrot weevil Listronotus oregonensis. Prevalence of infection by B. listronoti under field conditions was followed over a period of 16 years in an untreated carrot field. Susceptibility of different carrot weevil life stages was evaluated as well as the impact of infection on fecundity and mortality. Gene expression in infected and uninfected carrot weevils was also compared to evaluate the impact of the parasite on the host transcriptome. Prevalence of B. listronoti in carrot weevil populations was sustained over the years ranging from 20 to 63%. All the weevil stages exposed to B. listronoti inoculum were susceptible to infection, larvae being more vulnerable (59 ± 8% infected) compared with pupae (4 ± 3% infected) and adults (7 ± 3% infected). The fecundity of infected female weevils was greatly reduced (60-fold) due to an inhibition of the maturation of the reproductive system. Transcriptomic analyses revealed that this parasitic castration may have been triggered by the inhibition of reproductive hormone production. The B. listronoti-L. oregonensis interaction represents a case of parasitic castration with a unique potential for biological control of an important pest of carrots.

14.
Plant Dis ; 103(8): 2065-2069, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31169084

RESUMO

Potato cyst nematodes are a significant threat to potato production worldwide and have important economic impacts due to yield losses but also because of the expenses associated with regulation procedures. In order to reduce the sampling labor, an alternative strategy named the "Piler Dirt" that collects the soil carried with potato tubers during their transfer to storage was proposed. The method showed a better sensitivity than the reference method to detect fields infested with G. rostochiensis. The quantification of the number of cysts per kilogram of soil was proportional between the two methods at low and moderate population densities (R2 = 0.885) but no correlations were found at high density. However, the quantity of soil generated by the method was exceedingly large to be treated by diagnostic labs. It was shown that subsampling six aliquots, each equivalent to 5,000 cm3/ha, from the total quantity of soil generated by the Piler Dirt method, resulted in a probability of 97% to detect infested fields, 95% of the time in our dataset. Overall, Piler Dirt appears as a good compromise to reduce labor time and cost without significantly affecting sensitivity. However, it will be challenging to implement because it needs to be done simultaneously with harvest and will require the participation of farmers during a busy period.


Assuntos
Solo , Solanum tuberosum , Tylenchoidea , Animais , Tubérculos , Solo/parasitologia , Solanum tuberosum/parasitologia , Inquéritos e Questionários , Tylenchoidea/fisiologia
15.
Plant Dis ; 103(3): 456-460, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30620689

RESUMO

The stem and bulb nematode, Ditylenchus dipsaci, is a plant-parasitic nematode affecting over 500 plant species worldwide. Since 2012, garlic producers from Ontario and Quebec have been particularly affected with economic losses caused by this pest. Reproduction of D. dipsaci on a particular host depends on its biological race, and races are unknown for these populations from eastern Canada. As a polyphagous pest, D. dipsaci can possibly be a threat and have negative impact on many crops grown in Quebec, such as field and vegetable crops (e.g., onion). In this study, the host range of four populations of D. dipsaci from Quebec and Ontario was determined in a greenhouse experiment using 11 crops. Garlic, onion, and green onion showed high susceptibility to the nematode, whereas reproduction on potato was poor. No reproduction was observed on corn, soybean, barley, alfalfa, mustard, carrot, and lettuce. These crops could therefore be used as rotational crops in a control program. Thirty-two populations of D. dipsaci were also genetically characterized using genotyping-by-sequencing. The comparison of allele frequencies at 481 loci showed that most of the populations had a genotype similar to a reference population from northern Ontario. However, a sample from eastern Quebec exhibited a distinct genotype and will require further phenotyping in a greenhouse to preclude the possibility of a different race.


Assuntos
Produtos Agrícolas , Especificidade de Hospedeiro , Nematoides , Animais , Produtos Agrícolas/parasitologia , Frequência do Gene , Genes de Helmintos/genética , Genótipo , Nematoides/genética , Ontário , Quebeque
16.
J Nematol ; 51: 1-3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31132003

RESUMO

Ditylenchus dipsaci is a devastating pest to many crops worldwide. We present the first genome sequence for this species, produced with PacBio sequencing and assembled with CANU.Ditylenchus dipsaci is a devastating pest to many crops worldwide. We present the first genome sequence for this species, produced with PacBio sequencing and assembled with CANU.

17.
Bioinformatics ; 33(9): 1293-1300, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011783

RESUMO

Motivation: The identification of contaminating sequences in a de novo assembly is challenging because of the absence of information on the target species. For sample types where the target organism is impossible to isolate from its matrix, such as endoparasites, endosymbionts and soil-harvested samples, contamination is unavoidable. A few post-assembly decontamination methods are currently available but are based only on alignments to databases, which can lead to poor decontamination. Results: We present a new decontamination method based on a hierarchical clustering algorithm called MCSC. This method uses frequent patterns found in sequences to create clusters. These clusters are then linked to the target species or tagged as contaminants using classic alignment tools. The main advantage of this decontamination method is that it allows sequences to be tagged correctly even if they are unknown or misaligned to a database. Availability and Implementation: Scripts and documentation about the MCSC decontamination method are available at https://github.com/Lafond-LapalmeJ/MCSC_Decontamination . Contact: : benjamin.mimee@agr.gc.ca. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Sequência de RNA/métodos , Software , Transcriptoma , Algoritmos , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Tylenchida/genética , Gorgulhos/genética , Gorgulhos/parasitologia
18.
Plant Dis ; 102(5): 970-976, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30673390

RESUMO

Root lesion nematodes are very common plant-parasitic nematodes that affect a wide range of plants. More than one species can be found simultaneously in a field, and each has a different impact on crop yield. Unfortunately, identifying them using classical morphometric criteria is very difficult and time consuming. The species Pratylenchus alleni was recently observed for the first time in Canada, associated with severe damage in a soybean field in the province of Quebec. The major species, P. penetrans, is also known to be endemic in Quebec but no data exist on its distribution in field crops. This prompted the development of a multiplex quantitative polymerase chain reaction (PCR) assay for the simultaneous detection and quantification of P. alleni and P. penetrans. The method was found to be specific and sensitive, systematically detecting a single larva in a 100-cm3 soil sample with no cross-amplification with other species, even when they outnumbered the target species. An exogenous internal positive control was included in the test to avoid false negatives due to the presence of PCR inhibitors. This assay was used to study the distribution of P. alleni and P. penetrans in 185 soybean fields in the major soybean-producing areas of Quebec during a 3-year survey. Overall, P. penetrans was found in 42% of the fields, P. alleni in 8%, and both species in 4%. The population density of P. alleni in positive fields was still very low, with only a few larvae detected. However, densities of P. penetrans were much higher: the provincial mean was 51.7 nematodes per 100 cm3 of soil (in positive samples), and 8% of the fields (15 of 185) exceeded the theoretical economic threshold. The presence of P. penetrans was also strongly correlated with soil texture, with lighter soil being the most favorable.


Assuntos
Glycine max/parasitologia , Nematoides/genética , Nematoides/isolamento & purificação , Doenças das Plantas/parasitologia , Reação em Cadeia da Polimerase/métodos , Animais , Raízes de Plantas/parasitologia , Quebeque
19.
J Nematol ; 47(4): 290-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26941456

RESUMO

In 2006, the golden cyst nematode, Globodera rostochiensis, was discovered in the province of Quebec, Canada. We report here the life cycle of G. rostochiensis under the climatic conditions of southwestern Quebec. Only one full generation was completed per year under these latitudes. On susceptible potato cv. Snowden, G. rostochiensis needed a minimum of 579 growing degree units (GDU) (base 5.9°C) to complete its life cycle and the first mature cysts were observed 42 to 63 days after planting (DAP). In soil, second-stage juveniles (J2) were first observed 14 to 21 DAP, whereas both white females on roots and males in soil appeared synchronously after 35 to 42 days. The duration of the life cycle was affected by temperature but not by soil type. A second wave of hatching systematically occurred later in the season and a second generation of males was observed during the 2011 growth season. No complete second cycle was observed before plant senescence. Climate change and later maturing cultivars/crops could allow the development of a full second generation in the future.

20.
Sci Rep ; 14(1): 13915, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886543

RESUMO

The potato cyst nematode Globodera rostochiensis originates from the Andean Mountain region in South America and has unintentionally been introduced to all inhabited continents. Several studies have examined the population genetic structure of this pest in various countries by using microsatellite markers. However, merging microsatellite data produced from different laboratories is challenging and can introduce uncertainty when interpreting the results. To overcome this challenge and to explore invasion routes of this pest, we have genotyped 22 G. rostochiensis populations from all continents. Within populations, the highest genetic diversity was observed in the South American populations, the European populations showed an intermediate level of genetic diversity and the remaining populations were the less diverse. This confirmed pre-existing knowledge such as a first introduction event from South America to Europe, but the less diverse populations could originate either from South America or from Europe. At the continental scale, STRUCTURE genetic clustering output indicated that North America and Asia have experienced at least two introduction events. Comparing different evolutionary scenarios, the Approximate Bayesian Computation analysis showed that Europe served as a secondary distribution centre for the invasion of G. rostochiensis into all other continents (North America, Africa, Asia and Oceania).


Assuntos
Variação Genética , Repetições de Microssatélites , Solanum tuberosum , Tylenchoidea , Animais , Europa (Continente) , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Espécies Introduzidas , Teorema de Bayes , Genótipo , Doenças das Plantas/parasitologia , Genética Populacional , América do Sul
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa