Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772420

RESUMO

Currently, silicon-strain-gauge-based diaphragm pressure sensors use four single-gauge chips for high-output sensitivity. However, the four-single-gauge configuration increases the number of glass frit bonds and the number of aluminum wire bonds, reducing the long-term stability, reliability, and yield of the diaphragm pressure sensor. In this study, a new design of general-purpose silicon strain gauges was developed to improve the sensor output voltage while reducing the number of bonds. The new gauges consist grid patterns with a reciprocating arc of silicon piezoresistors on a thin glass backing. The gauges make handling easier in the bonding process due to the use of thin glass for the gauge backing. The pressure sensors were tested under pressure ranging from 0 to 50 bar at five different temperatures, with a linear output with a typical sensitivity of approximately 16 mV/V/bar and an offset shift of -6 mV to 2 mV. The new approach also opens the possibility to extend arc strain gauges to half-bridge and full-bridge configurations to further reduce the number of glass frit and Al wire bonds in the diaphragm pressure sensor.

2.
Sensors (Basel) ; 23(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896484

RESUMO

Half-bridge silicon strain gauges are widely used in the fabrication of diaphragm-type high-pressure sensors, but in some applications, they suffer from low output sensitivity because of mounting position constraints. Through a special design and fabrication approach, a new half-bridge silicon strain gauge comprising one arc gauge responding to tangential strain and another linear gauge measuring radial strain was developed using Silicon-on-Glass (SiOG) substrate technology. The tangential gauge consists of grid patterns, such as the reciprocating arc of silicon piezoresistors on a thin glass substrate. When two half-bridges are connected to form a full bridge with arc-shaped gauges that respond to tangential strain, they have the advantage of providing much higher output sensitivity than a conventional half-bridge. Pressure sensors tested under pressure ranging from 0 to 50 bar at five different temperatures indicate a linear output with a typical sensitivity of approximately 16 mV/V/bar, a maximum zero shift of 0.05% FS, and a span shift of 0.03% FS. The higher output level of pressure sensing gauges will provide greater signal strength, thus maintaining a better signal-to-noise ratio than conventional pressure sensors. The offset and span shift curves are quite linear across the operating temperature range, giving the end user the advantage of using very simple algorithms for temperature compensation of offset and span shift.

3.
Sensors (Basel) ; 20(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466606

RESUMO

We present a cost-effective approach to produce silicon strain gauges that can withstand very high voltage without using any complex package design and without sacrificing any sensor performance. This is achieved by a special silicon strain gauge structure created on an alkali-free glass substrate that has a high breakdown voltage. A half-bridge silicon strain gauge is designed, fabricated, and then tested to measure its output characteristics. The device has a glass layer that is only 25-55 µm thick; it shows it is able to withstand a voltage of over 2000 V while maintaining a high degree of linearity with correlation coefficients higher than 0.9990 and an average sensitivity of 104.13. Due to their unique electrical properties, silicon strain gauges-on-glass chips hold much promise for use in advanced force and pressure sensors.

4.
Adv Funct Mater ; 29(26)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38957778

RESUMO

Combination chemotherapy administering multiple chemo-agents is widely exploited for the treatment of various cancers in the clinic. Specially for hepatocellular carcinoma (HCC), one of the most common malignancies, a co-administration of combinational cytostatic multi-kinase inhibitors and cytotoxic chemo-agents has been suggested as a potential curative approach. Here, Janus microcarriers were developed for the controlled local combination chemotherapy of HCC. The Janus microcarriers are composed of polycaprolactone (PCL) compartment and magnetic nanoparticles-loaded poly(lactide-co-glycolic acid) (PLGA) compartment which contain hydrophobic regorafenib and hydrophilic doxorubicin, respectively. Exploiting the magnetic anisotropy, rotational motion of the Janus microcarriers is controlled with magnetic field, which enables the active co-release of dual chemo-agents. Furthermore, Janus microcarriers exhibit magnetic resonance (MR) contrast effect, supporting the successful transcatheter intra-arterial delivery of the combination chemo-agents loaded the microcarriers to the targeted tumor. This Janus microcarriers potentially serve as a general combinational chemo-therapeutic platform for the co-delivery of various combinations of multi-chemo-agents.

5.
Sensors (Basel) ; 18(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301270

RESUMO

A fully integrated paper microfluidic electrochemical device equipped with three different cation permeable films is developed to determine blood ions (Cl-, Na⁺, K⁺, and Ca2+) at a time. These blood ions that are normally dissolved in the real human blood stream are essential for cell metabolisms and homeostasis in the human body. Abnormal concentration of blood ions causes many serious disorders. The optimized microfluidic device working without any external power source can directly and effectively separate human blood components, and subsequently detect a specific blood ion with minimized interference. The measured sensitivity to Cl-, K⁺, Na⁺, and Ca2+ are -47.71, 45.97, 51.06, and 19.46 in mV decade-1, respectively. Potentiometric responses of the microfluidic devices to blood serum samples are in the normal ranges of each cation, and comparable with responses from the commercial blood ion analyzer Abbott i-Stat.


Assuntos
Íons/sangue , Microfluídica , Humanos , Dispositivos Lab-On-A-Chip , Potenciometria
6.
Neuroimage ; 125: 45-52, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26481678

RESUMO

Previous work has shown that the meaning of a quantifier such as "many" or "few" depends in part on quantity. However, the meaning of a quantifier may vary depending on the context, e.g. in the case of common entities such as "many ants" (perhaps several thousands) compared to endangered species such as "many pandas" (perhaps a dozen). In a recent study (Heim et al., 2015 Front. Psychol.) we demonstrated that the relative meaning of "many" and "few" may be changed experimentally. In a truth value judgment task, displays with 40% of circles in a named color initially had a low probability of being labeled "many". After a training phase, the likelihood of acceptance 40% as "many" increased. Moreover, the semantic learning effect also generalized to the related quantifier "few" which had not been mentioned in the training phase. Thus, fewer 40% arrays were considered "few." In the present study, we tested the hypothesis that this semantic adaptation effect was supported by cytoarchitectonic Brodmann area (BA) 45 in Broca's region which may contribute to semantic evaluation in the context of language and quantification. In an event-related fMRI study, 17 healthy volunteers performed the same paradigm as in the previous behavioral study. We found a relative signal increase when comparing the critical, trained proportion to untrained proportions. This specific effect was found in left BA 45 for the trained quantifier "many", and in left BA 44 for both quantifiers, reflecting the semantic adjustment for the untrained but related quantifier "few." These findings demonstrate the neural basis for processing the flexible meaning of a quantifier, and illustrate the neuroanatomical structures that contribute to variable meanings that can be associated with a word when used in different contexts.


Assuntos
Área de Broca/anatomia & histologia , Área de Broca/fisiologia , Aprendizagem/fisiologia , Semântica , Adulto , Mapeamento Encefálico , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
7.
Sensors (Basel) ; 17(1)2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28042843

RESUMO

The effect of cleaning the surface of single-walled carbon nanotube (SWNT) networks by thermal and the O2 plasma treatments is presented in terms of NH3 gas sensing characteristics. The goal of this work is to determine the relationship between the physicochemical properties of the cleaned surface (including the chemical composition, crystal structure, hydrophilicity, and impurity content) and the sensitivity of the SWNT network films to NH3 gas. The SWNT networks are spray-deposited on pre-patterned Pt electrodes, and are further functionalized by heating on a programmable hot plate or by O2 plasma treatment in a laboratory-prepared plasma chamber. Cyclic voltammetry was employed to semi-quantitatively evaluate each surface state of various plasma-treated SWNT-based electrodes. The results show that O2 plasma treatment can more effectively modify the SWNT network surface than thermal cleaning, and can provide a better conductive network surface due to the larger number of carbonyl/carboxyl groups, enabling a faster electron transfer rate, even though both the thermal cleaning and the O2 plasma cleaning methods can eliminate the organic solvent residues from the network surface. The NH3 sensors based on the O2 plasma-treated SWNT network exhibit higher sensitivity, shorter response time, and better recovery of the initial resistance than those prepared employing the thermally-cleaned SWNT networks.

8.
Langmuir ; 31(3): 937-43, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25549662

RESUMO

Anisotropic microparticles are promising as a new class of colloidal or granular materials due to their advanced functionalities which are difficult to achieve with isotropic particles. However, synthesis of the anisotropic microparticles with a highly controlled size and shape still remains challenging, despite their intense demands. Here, we report a microfluidic approach to create uniform anisotropic microparticles using phase separation of polymer blends confined in emulsion drops. Two different polymers are homogeneously dissolved in organic solvent at low concentration, which is microfluidically emulsified to produce oil-in-water emulsion drops. As the organic solvent diffuses out, small domains are formed in the emulsion drops, which are then merged, forming only two distinct domains. After the drops are fully consolidated, uniform anisotropic microparticles with two compartments are created. The shape of the resulting microparticles is determined by combination of a pair of polymers and type of surfactant. Spherical microparticles with eccentric core and incomplete shell are prepared by consolidation of polystyrene (PS) and poly(lactic acid) (PLA), and microparticles with single crater are formed by consolidation of PS and poly(methyl methacrylate) (PMMA); both emulsions are stabilized with poly(vinyl alcohol) (PVA). With surfactants of triblock copolymer, acorn-shaped Janus microparticles are obtained by consolidating emulsion drops containing PS and PLA. This microfluidic production of anisotropic particles can be further extended to any combination of polymers and colloids to provide a variety of structural and chemical anisotropy.

9.
J Nanosci Nanotechnol ; 13(9): 6400-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205669

RESUMO

Improving the response time for polyimide (PI)-based capacitive humidity sensors is critical for real-time sensing. Multi-walled carbon nanotube (MWCNT) films were used to form the upper electrode of humidity sensor to realize an extremely short response times. MWCNT films were spray-deposited on a moisture-sensitive PI layer and subsequently patterned by oxygen plasma. Random-network MWCNT electrodes have a well-entangled and open porous structure that is almost impossible to obtain with conventional metal electrodes. Compared with porous metal electrode-based sensors as an upper electrode, the fabricated capacitive humidity sensors with MWCNT electrodes showed an exceptionally short response time of less than 2.5 s and a good linearity of 0.998. An analysis of the long-term (100 days) stability data revealed that the MWCNT electrode humidity sensors showed little drift even after 100 days aging, indicating that they are suitable for practical and reliable humidity measurements. These improvements in performance may stem from their interconnected microscopic porous structure, which is more accessible to water molecules through the conductive electrode.

10.
J Nanosci Nanotechnol ; 13(12): 7932-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266167

RESUMO

We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.

11.
Bioconjug Chem ; 23(10): 2078-86, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22988883

RESUMO

The interface between biomacromolecules and carbon nanotubes (CNTs) is of critical importance in developing effective techniques that provide CNTs with both biomolecular recognition and signal transduction through immobilization. However, the chemical inertness of CNT surfaces poses an obstacle to wider implementation of CNTs in bioanalytical applications. In this paper, we present a review of our recent research activities related to the covalent attachment of biomacromolecules to plasma-patterned and functionalized carbon nanotube films and their application to the fabrication of electrochemical biosensing devices. The SWCNT films were spray-deposited onto a miniaturized three-electrode system on a glass substrate and activated using highly purified atomic oxygen generated in radiofrequency plasma; this introduced oxygen-containing functional groups into the SWCNT surface without fatal loss of the original physicochemical properties of the CNTs. The carboxylated SWCNT electrodes were then selectively modified via amidation or esterification for covalent immobilization of the biomacromolecules. The plasma-treated SWCNT-based sensing electrode had an approximately six times larger effective area than the untreated SWCNT-based electrode, which significantly amplified the amperometric electrochemical signal. Finally, the efficacy of plasma-functionalized SWCNT (pf-SWCNT) as a biointerface was examined by immobilizing glucose oxidase, Legionella pneumophila ( L. pneumophila)-specific antibodies, L. pneumophila-originated DNAs, and thrombin-specific aptamers on the pf-SWCNT-based three-electrode devices. The pf-SWCNT films were found to support direct covalent immobilization of the above-listed biomacromolecules on the films and to thereby overcome the many drawbacks typically associated with simple physisorption. Thus, pf-SWCNT sensing electrodes on which biomacromolecules were covalently immobilized were found to be chemically stable and have a long lifetime.


Assuntos
Técnicas Biossensoriais/instrumentação , Substâncias Macromoleculares/química , Nanotubos de Carbono/química , Gases em Plasma/química , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sondas de DNA/química , Eletroquímica , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Imunoensaio , Legionella , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Oxigênio/química , Conformação Proteica , Trombina/metabolismo
12.
Biomed Microdevices ; 14(3): 613-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22391878

RESUMO

We present an integration process to fabricate single-walled carbon nanotube (SWCNT) three-electrode systems on glass substrate for electrochemical biosensors. Key issues involve optimization of the SWCNT working electrode to achieve high sensitivity, developing an optimal Ag/AgCl reference electrode with good stability, and process development to integrate these electrodes. Multiple spray coatings of the SWCNT film on glass substrate enabled easier integration of the SWCNT film into an electrochemical three-electrode system. O2 plasma etching and subsequent activation of spray-coated SWCNT films were needed to pattern and functionalize the SWCNT working electrode films without serious damage to the SWCNTs, and to remove organic residues. The microfabricated three-electrode systems were characterized by microscopic and spectroscopic techniques, and the electrochemical properties were investigated using cyclic voltammetry and chrono-amperometry. The fully-integrated CNT three-electrode system showed an effective working electrode area about three times larger than its geometric surface area and an improved electrochemical activity for hydrogen peroxide decomposition. Finally, the effectiveness of miniaturized pf-SWCNT electrodes as biointerfaces was examined by applying them to immunosensors to detect Legionella(L) pneumophila, based on a direct sandwich enzyme-linked immunosorbent assay (ELISA) format with 3,3',5,5'-tetramethylbenzidine dihydrochloride/hydrogen peroxide(TMB/H2O2) as the substrate/mediator system. The lower detection limit of the pf-SWCNT-based immunosensors to L. pneumophila is about 1500 times lower than that of the standard ELISA assay.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Desenho de Equipamento/instrumentação , Microeletrodos , Microtecnologia/instrumentação , Nanotubos de Carbono/química , Benzidinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Vidro/química , Peróxido de Hidrogênio/metabolismo , Legionella pneumophila/isolamento & purificação , Limite de Detecção , Microscopia de Força Atômica , Microtecnologia/métodos , Espectroscopia Fotoeletrônica , Análise Espectral Raman
13.
Biotechnol Bioeng ; 109(6): 1471-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22234602

RESUMO

Transferred multi-walled carbon nanotube (MWCNT)-modified platinum thin-film immunosensing electrode material was engineered on a glass substrate and fabricated a fully-integrated electrochemical three-electrode system for monitoring Legionella pneumophila. The transferred MWCNT film was treated with oxygen plasma to improve its electrochemical response and electrical conductivity. We voltammetrically characterized and optimized the electrochemical performance of the fabricated electrode for direct detection of Legionella pneumophila-specific peptidoglycan-associated lipoprotein (PAL) and maltose binding protein (MBP) peptidoglycan-associated lipoprotein (MBP-PAL) fusion. The latter, as an intermediate product to yield the former, has important roles in the growth and purification of PAL, which commercial enzyme-linked immunosorbent assay (ELISA) kits require as a target substrate. Consequently, direct electrochemical detection of MBP-PAL compared to PAL by square-wave voltammetry showed a greater than 50% increase in sensitivity with a lower detection limit of 5 pg mL(-1). We also investigated the affinity properties by determining kinetic parameters of the PAL and the MBP-PAL in relation to polyclonal antibodies immobilized on transferred MWCNT substrates using Michaelis-Menten assumptions and a Hanes-Woolf plot. This new method presented herein could save the time and effort for the separation and purification of PAL form MBP-PAL fusions that are required for performing ELISA-based immunoassay.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Técnicas Biossensoriais/métodos , Legionella pneumophila/química , Legionella pneumophila/isolamento & purificação , Nanotubos de Carbono/química , Proteoglicanas/análise , Proteínas da Membrana Bacteriana Externa/imunologia , Imunoensaio/métodos , Legionella pneumophila/imunologia , Proteínas Ligantes de Maltose/metabolismo , Proteoglicanas/imunologia , Sensibilidade e Especificidade
14.
J Nanosci Nanotechnol ; 12(7): 6011-5, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966699

RESUMO

We designed and fabricated a bimorph Pb(Zr,Ti)O3 (PZT) cantilever with an integrated Si proof mass to obtain a low resonant frequency for an energy harvesting application. The cantilevers were fabricated on the micro-electromechanical systems (MEMS) scale. A mode of piezoelectric conversions were d31 and d33 mode in cantilever vibration Therefore, we designed and fabricated a single cantilever with d31 unimorph, d31 bimorph, d33 unimorph, and d33 bimorph modes. Finally, we fabricated a device with beam dimensions of about 5,400 microm x 480 microm x 14 microm (< +/- 5%), and an integrated Si proof mass with dimensions of about 1,481 microm x 988 microm x 450 microm (< +/- 5%). In order to measure the d31 and d33 modes, we fabricated top and bottom electrodes. The distance between the top electrodes was 50 microm and the resonant frequency was 89.4 Hz. The average powers of the d31 unimorph, d31 bimorph, d33 unimorph, and d33 bimorph modes were 3.90, 9.60, 21.42, and 22.47 nW at 0.8 g (g = 9.8 m/s2) and optimal resistance, respectively.

15.
J Nanosci Nanotechnol ; 12(2): 1170-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629914

RESUMO

Micro electro mechanical systems (MEMS) platforms for gas sensing devices with the co-planar type micro-heaters were designed, fabricated and its effects on the In2O3 gas sensors were investigated. Micro-heaters in MEMS gas sensor platforms were designed in the four-type heater patterns with different geometries. Electro-thermal characterizations showed that the designed platforms had highly thermal efficiency because the micro hot-plate structures were formed in the diaphragm and the thermal efficiencies were analyzed for all of 16 models and compared with each other, respectively. The designed micro-platforms were fabricated by MEMS process, and Indium oxide (In2O3) nanoparticles were synthesized by sol-gel process and dropped on the MEMS platforms for detecting the noxious oxide gas (NO2) Fabricated micro-platforms had a very low power consumption in the fabricated 16-type models, especially, the minimum power consumption was 41 mW at the operating temperature of 250 degrees C. After experiments on gas sensing characteristics to NO2 gases, fabricated In2O3 gas sensors had almost the same gas sensitivity (Rs) at the operation temperature of 250 degrees C. It is concluded that the micro-heater geometries, pattern shapes and sizes, can be influential on the power consumption of the devices and its gas sensing characteristics.

16.
Analyst ; 136(9): 1910-5, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21390372

RESUMO

A single walled carbon nanotube (SWCNT)-based three-electrode system was fully integrated on glass substrates using a standard microfabrication process and electrochemically characterized using cyclic voltammetry. O(2) plasma functionalization of the SWCNT film working electrode for achieving high sensitivity was voltammetrically optimized with respect to the plasma power and treatment time. Chlorination of a Ag thin-film was done in an acidic solution for different dip times to form a thin-film Ag/AgCl reference electrode. The Nernstian behavior of as-prepared and seven-day-aged Ag/AgCl thin-film electrodes was investigated for seeking the optimum reference electrode with long-term stability and was compared to a commercial reference electrode. A quality control evaluation and a performance assessment of the fully integrated SWCNT-transferred sensing systems were performed using cyclic voltammetry. The proposed SWCNT-based three electrode device exhibited clear electrochemistry under voltammetric conditions, and is therefore a candidate for use in all electrochemical biosensors.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Vidro/química , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Compostos de Prata/química
17.
Nanotechnology ; 22(45): 455301, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21993311

RESUMO

We present the design, fabrication, and characterization results of single-wall carbon nanotube (SWCNT) film strain gauges for potential applications as highly sensitive strain, weight, or pressure sensors on the macro-scale. A batch microfabrication process was developed for practical device construction and packaging using spray-coated SWCNTs and a conventional semiconductor process. The prototype was characterized using a commercial metal foil gauge with tensile and compressive testing on a binocular load cell. Our test results demonstrated that the proposed SWCNT film gauges have a linear relationship between resistance changes and externally applied strain. The gauge factor ranged from 7.0 to 16.4 for four different micro-grid configurations, indicating that the maximum strain sensitivity of the prototype was approximately eight times greater than that of commercial gauges.

18.
J Nanosci Nanotechnol ; 11(7): 6510-3, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121746

RESUMO

In this study, a PZT cantilever with a Si proof mass is designed and fabricated for a low frequency energy harvesting application. A mathematical model of a multi-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. Our cantilever design was based on MATLAB and ANSYS simulations. For this simulation, the proof mass volumes were varied from 0 to 0.5 mm3 and resonant frequencies were calculated from 833.5 Hz to 125.5 Hz, respectively. Based on simulation, we fabricated a device with beam dimensions of about 4.10 mm x 0.48 mm x 0.012 mm, and an integrated Si proof mass with dimensions of about 0.481 mm x 0.48 mm x 0.45 mm. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 224.8 Hz, 4.8 mV, and 2.24 nW, respectively.

19.
Nanomaterials (Basel) ; 10(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471170

RESUMO

Pristine nanomaterials are normally prepared using finely controlled fabrication processes. Because no imperfect nanostructure remains, they cannot be used directly as electrode substrates of functional devices. This is because perfectly organized nanostructures or nanomaterials commonly require posttreatment to generate intentionally, the kinds of desirable defects inside or on their surfaces that enable effective functionalization. Plasma treatment is an easier, simpler and more widely used way (relative to other methods) to modify a variety of nanomaterials, although plasma-functionalized nano surfaces commonly have a short lifetime. We present herein a dual plasma treatment (DPT) that significantly enhances the degree and lifetime of plasma-induced surface functional groups on single-walled carbon nanotubes (SWCNTs). The DPT process consists of two individually optimized oxygen-plasma treatments. The DPT-modified SWCNT functioned as a sensing material for ammonia gas for more than a month. It also provided more than three times the degree of functionality for amplified signal output than with a single-plasma-treated SWCNT electrode.

20.
Sci Rep ; 10(1): 21090, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273563

RESUMO

Bacteria can form biofilms, complex microbial communities protected from environmental stress, on food contact surfaces. Brassicaceae plant has been shown to contain bioactive compounds with antimicrobial activities. The objective of this study was to evaluate the synergistic effects of Brassicaceae species and proteinase K against E. coli O157:H7 biofilm. We determined the minimum biofilm inhibitory concentration, the fractional inhibitory concentration indexes, and the synergistic inhibitory effect of Raphanus sativus var. longipinnatus, R. sativus, and Brassica oleracea var. acephala extracts with proteinase K on E. coli O157:H7. The biofilm showed a 49% reduction with 2 mg/mL R. sativus. The combination of proteinase K 25 µg/mL significantly increased the effect of 2 mg/mL R. sativus var. longipinnatus and the combined treatment yielded up to 2.68 log reduction on stainless steel coupons. The results showed that the combination of R. sativus var. longipinnatus extract and proteinase K could serve as an anti-biofilm agent with synergistic effects for inhibiting E. coli O157:H7 biofilm on stainless steel surfaces.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Brassicaceae/química , Endopeptidase K/farmacologia , Escherichia coli/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sinergismo Farmacológico , Escherichia coli/fisiologia , Aço Inoxidável
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa