Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447632

RESUMO

A retinal prosthesis, also known as a bionic eye, is a device that can be implanted to partially restore vision in patients with retinal diseases that have resulted in the loss of photoreceptors (e.g., age-related macular degeneration and retinitis pigmentosa). Recently, there have been major breakthroughs in retinal prosthesis technology, with the creation of numerous types of implants, including epiretinal, subretinal, and suprachoroidal sensors. These devices can stimulate the remaining cells in the retina with electric signals to create a visual sensation. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 is conducted. This narrative review delves into the retinal anatomy, physiology, pathology, and principles underlying electronic retinal prostheses. Engineering aspects are explored, including electrode-retina alignment, electrode size and material, charge density, resolution limits, spatial selectivity, and bidirectional closed-loop systems. This article also discusses clinical aspects, focusing on safety, adverse events, visual function, outcomes, and the importance of rehabilitation programs. Moreover, there is ongoing debate over whether implantable retinal devices still offer a promising approach for the treatment of retinal diseases, considering the recent emergence of cell-based and gene-based therapies as well as optogenetics. This review compares retinal prostheses with these alternative therapies, providing a balanced perspective on their advantages and limitations. The recent advancements in retinal prosthesis technology are also outlined, emphasizing progress in engineering and the outlook of retinal prostheses. While acknowledging the challenges and complexities of the technology, this article highlights the significant potential of retinal prostheses for vision restoration in individuals with retinal diseases and calls for continued research and development to refine and enhance their performance, ultimately improving patient outcomes and quality of life.


Assuntos
Engenharia Biomédica , Retina , Doenças Retinianas , Próteses Visuais , Humanos , Qualidade de Vida , Retina/patologia , Retina/fisiologia , Doenças Retinianas/patologia , Doenças Retinianas/terapia , Próteses Visuais/efeitos adversos , Próteses Visuais/normas , Próteses Visuais/tendências , Engenharia Biomédica/instrumentação , Engenharia Biomédica/tendências , Eletrodos Implantados/normas , Seleção de Pacientes , Resultado do Tratamento
2.
Cleft Palate Craniofac J ; : 10556656231172296, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161276

RESUMO

OBJECTIVE: Significant evidence links epigenetic processes governing the dynamics of DNA methylation and demethylation to an increased risk of syndromic and nonsyndromic cleft lip and/or cleft palate (CL/P). Previously, we characterized mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation in the mouse incisor dental pulp. The main objective of this research was to characterize the transcriptional landscape of regulatory genes associated with DNA methylation and demethylation at a single-cell resolution. DESIGN: We used single-cell RNA sequencing (scRNA-seq) data to characterize transcriptome in individual subpopulations of MSCs in the mouse incisor dental pulp. SETTINGS: The biomedical research institution. PATIENTS/PARTICIPANTS: This study did not include patients. INTERVENTIONS: This study collected and analyzed data on the single-cell RNA expssion in the mouse incisor dental pulp. MAIN OUTCOME MEASURE(S): Molecular regulators of DNA methylation/demethylation exhibit differential transcriptional landscape in different subpopulations of osteogenic progenitor cells. RESULTS: scRNA-seq analysis revealed that genes encoding DNA methylation and demethylation enzymes (DNA methyltransferases and members of the ten-eleven translocation family of methylcytosine dioxygenases), methyl-DNA binding domain proteins, as well as transcription factors and chromatin remodeling proteins that cooperate with DNA methylation machinery are differentially expressed within distinct subpopulations of MSCs that undergo different stages of osteogenic differentiation. CONCLUSIONS: These findings suggest some mechanistic insights into a potential link between epigenetic alterations and multifactorial causes of CL/P phenotypes.

3.
Calcif Tissue Int ; 110(1): 93-103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34245331

RESUMO

Transgenic mice overexpressing human high molecular weight fibroblast growth factor 2 (HMWFGF2) isoforms in osteoblast and odontoblast lineages (HMWTg) exhibit decreased dentin and alveolar bone mineralization, enlarged pulp chamber, and increased fibroblast growth factor 23 (FGF23). We examined if the alveolar bone and dentin mineralization defects in HMWTg mice resulted from increased FGF23 expression and whether an FGF23 neutralizing antibody could rescue the hypomineralization phenotype. HMWTg and VectorTg control mice were given subcutaneous injections of FGF23 neutralizing antibody twice/week starting at postnatal day 21 for 6 weeks. Since Calcitriol (1,25D) have direct effects in promoting bone mineralization, we also determined if 1,25D protects against the defective dentin and alveolar bone mineralization. Therefore, HMWTg mice were given subcutaneous injections of 1,25D daily or concomitantly with FGF23 neutralizing antibody for 6 weeks. Our results showed that HMWTg mice displayed thickened predentin, alveolar bone hypomineralization, and enlarged pulp chambers. FGF23 neutralizing antibody and 1,25D monotherapy partially rescued the dentin mineralization defects and the enlarged pulp chamber phenotype in HMWTg mice. 1,25D alone was not sufficient to rescue the alveolar bone hypomineralization. Interestingly, HMWTg mice treated with both FGF23 neutralizing antibody and 1.25D further rescued the enlarged pulp chamber size, and dentin and alveolar bone mineralization defects. We conclude that the dentin and alveolar bone mineralization defects in HMWTg mice might result from increased FGF23 expression. Our results show a novel role of HMWFGF2 on dentoalveolar mineralization.


Assuntos
Calcificação Fisiológica , Fator 2 de Crescimento de Fibroblastos , Fator de Crescimento de Fibroblastos 23 , Processo Alveolar , Animais , Dentina , Fatores de Crescimento de Fibroblastos , Camundongos , Camundongos Transgênicos , Peso Molecular , Isoformas de Proteínas
4.
Genesis ; 57(10): e23324, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271259

RESUMO

To gain a better understanding of the progression of progenitor cells in the odontoblast lineage, we have examined and characterized the expression of a series of GFP reporters during odontoblast differentiation. However, previously reported GFP reporters (pOBCol2.3-GFP, pOBCol3.6-GFP, and DMP1-GFP), similar to the endogenous proteins, are also expressed by bone-forming cells, which made it difficult to delineate the two cell types in various in vivo and in vitro studies. To overcome these difficulties we generated DSPP-Cerulean/DMP1-Cherry transgenic mice using a bacterial recombination strategy with the mouse BAC clone RP24-258g7. We have analyzed the temporal and spatial expression of both transgenes in tooth and bone in vivo and in vitro. This transgenic animal enabled us to visualize the interactions between odontoblasts and surrounding tissues including dental pulp, ameloblasts and cementoblasts. Our studies showed that DMP1-Cherry, similar to Dmp1, was expressed in functional and fully differentiated odontoblasts as well as osteoblasts, osteocytes and cementoblasts. Expression of DSPP-Cerulean transgene was limited to functional and fully differentiated odontoblasts and correlated with the expression of Dspp. This transgenic animal can help in the identification and isolation of odontoblasts at later stages of differentiation and help in better understanding of developmental disorders in dentin and odontoblasts.


Assuntos
Proteínas da Matriz Extracelular/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Odontoblastos/citologia , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Animais , Diferenciação Celular , Corantes Fluorescentes , Camundongos , Camundongos Transgênicos , Transgenes
5.
Cells Tissues Organs ; 199(5-6): 311-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25823776

RESUMO

Dentinogenesis is a complex and multistep process, which is regulated by various growth factors, including members of the fibroblast growth factor (FGF) family. Both positive and negative effects of FGFs on dentinogenesis have been reported, but the underlying mechanisms of these conflicting results are still unclear. To gain a better insight into the role of FGF2 in dentinogenesis, we used dental pulp cells from various transgenic mice, in which fluorescent protein expression identifies cells at different stages of odontoblast differentiation. Our results showed that the continuous exposure of pulp cells to FGF2 inhibited mineralization and revealed both the stimulatory and inhibitory effects of FGF2 on the expression of markers of dentinogenesis and various transgenes. During the proliferation phase of in vitro growth, FGF2 increased the expression of markers of dentinogenesis and the percentages of dentin matrix protein 1/green fluorescent protein (DMP1-GFP)-positive functional odontoblasts and dentin sialophosphoprotein (DSPP)-Cerulean-positive odontoblasts. Additional exposure to FGF2 during the differentiation/mineralization phase of in vitro growth decreased the extent of mineralization and the expression of markers of dentinogenesis and of the DMP1-GFP and DSPP-Cerulean transgenes. Recovery experiments showed that the inhibitory effects of FGF2 on dentinogenesis were related to the blocking of the differentiation of cells into mature odontoblasts. These observations together showed the stage-specific effects of FGF2 on dentinogenesis by dental pulp cells, and they provide critical information for the development of improved treatments for vital pulp therapy and dentin regeneration.


Assuntos
Polpa Dentária/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Dentinogênese , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos
6.
Connect Tissue Res ; 55 Suppl 1: 53-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158181

RESUMO

Odontoblast differentiation during physiological and reparative dentinogenesis is dependent upon multiple signaling molecules, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs) and Wingless/Integrated (Wnt) ligands. Recent studies in our laboratory showed that continuous exposure of primary dental pulp cultures to FGF2 exerted biphasic effects on the expression of markers of dentinogenesis. In the present study, we examined the possible involvement of the BMP and Wnt signaling pathways in mediating the effects of FGF2 on dental pulp cells. Our results showed that stimulatory effects of FGF2 on dentinogenesis during the proliferation phase of growth were associated with increased expression of the components of the BMP (Bmp2, Dlx5, Msx2, Osx) and Wnt (Wnt10a, Wisp2) pathways, and decreased expression of an inhibitor of the Wnt signaling, Nkd2. Further addition of FGF2 during the differentiation/mineralization phase of growth resulted in decreased expression of components of the BMP signaling (Bmp2, Runx2, Osx) and increased expression of inhibitors of the Wnt signaling (Nkd2, Dkk3). This suggests that both BMP and Wnt pathways may be involved in mediating the effects of FGF2 on dental pulp cells.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Odontoblastos/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Osteogênese/fisiologia
7.
Eye (Lond) ; 38(6): 1041-1064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38036608

RESUMO

Standard automated perimetery is considered the gold standard for evaluating a patient's visual field. However, it is costly and requires a fixed testing environment. In response, perimetric devices using virtual reality (VR) headsets have emerged as an alternative way to measure visual fields in patients. This systematic review aims to characterize both novel and established VR headsets in the literature and explore their potential applications within visual field testing. A search was conducted using MEDLINE, Embase, CINAHL, and the Core Collection (Web of Science) for articles published until January 2023. Subject headings and keywords related to virtual reality and visual field were used to identify studies specific to this topic. Records were first screened by title/abstract and then by full text using predefined criteria. Data was extracted accordingly. A total of 2404 records were identified from the databases. After deduplication and the two levels of screening, 64 studies describing 36 VR headset perimetry devices were selected for extraction. These devices encompassed various visual field measurement techniques, including static and kinetic perimetry, with some offering vision rehabilitation capabilities. This review reveals a growing consensus that VR headset perimetry devices perform comparably to, or even better than, standard automated perimetry. They are better tolerated by patients in terms of gaze fixation, more cost-effective, and generally more accessible for patients with limited mobility.


Assuntos
Doenças do Sistema Nervoso , Realidade Virtual , Humanos , Testes de Campo Visual , Campos Visuais , Fixação Ocular
9.
Micromachines (Basel) ; 14(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37893352

RESUMO

Glaucoma, marked by its intricate association with intraocular pressure (IOP), stands as a predominant cause of non-reversible vision loss. In this review, the physiological relevance of IOP is detailed, alongside its potential pathological consequences. The review further delves into innovative engineering solutions for IOP monitoring, highlighting the latest advancements in wearable and implantable sensors and their potential in enhancing glaucoma management. These technological innovations are interwoven with clinical practice, underscoring their real-world applications, patient-centered strategies, and the prospects for future development in IOP control. By synthesizing theoretical concepts, technological innovations, and practical clinical insights, this review contributes a cohesive and comprehensive perspective on the IOP biosensor's role in glaucoma, serving as a reference for ophthalmological researchers, clinicians, and professionals.

11.
Gene Expr Patterns ; 43: 119228, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915194

RESUMO

The dental pulp is known to be highly heterogenous, comprising distinct cell types including mesenchymal stromal cells (MSCs), which represent neural-crest-derived cells with the ability to differentiate into multiple cell lineages. However, the cellular heterogeneity and the transcriptome signature of different cell clusters within the dental pulp remain to be established. To better understand discrete cell types, we applied a single-cell RNA sequencing strategy to establish the RNA expression profiles of individual dental pulp cells from 5- to 6-day-old mouse incisors. Our study revealed distinct subclasses of cells representing osteoblast, odontoblast, endothelial, pancreatic, neuronal, immune, pericyte and ameloblast lineages. Collectively, our research demonstrates the complexity and diversity of cell subclasses within the incisor dental pulp, thus providing a foundation for uncovering the molecular processes that govern cell fate decisions and lineage commitment in dental pulp-derived MSCs.


Assuntos
Incisivo , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Polpa Dentária , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transcriptoma
12.
Stem Cells Int ; 2022: 4969441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992033

RESUMO

Objectives. Kabuki syndrome (KS) is a rare genetic disorder characterized by developmental delay, retarded growth, and cardiac, gastrointestinal, neurocognitive, renal, craniofacial, dental, and skeletal defects. KS is caused by mutations in the genes encoding histone H3 lysine 4 methyltransferase (KMT2D) and histone H3 lysine 27 demethylase (KDM6A), which are core components of the complex of proteins associated with histone H3 lysine 4 methyltransferase SET1 (SET1/COMPASS). Using single-cell RNA data, we examined the expression profiles of Kmt2d and Kdm6a in the mouse dental pulp. In the incisor pulp, Kmt2d and Kdm6a colocalize with other genes of the SET1/COMPASS complex comprised of the WD-repeat protein 5 gene (Wdr5), the retinoblastoma-binding protein 5 gene (Rbbp5), absent, small, and homeotic 2-like protein-encoding gene (Ash2l), nuclear receptor cofactor 6 gene (Ncoa6), and Pax-interacting protein 1 gene (Ptip1). In addition, we found that Kmt2d and Kdm6a coexpress with the downstream target genes of the Wingless and Integrated (WNT) and sonic hedgehog signaling pathways in mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation. Taken together, our results suggest an essential role of KMT2D and KDK6A in directing lineage-specific gene expression during differentiation of MSCs.

13.
J Biochem ; 171(1): 123-129, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34676418

RESUMO

The dental pulp is critical for the production of odontoblasts to create reparative dentin. In recent years, dental pulp has become a promising source of mesenchymal stem cells that are capable of differentiating into multiple cell types. To elucidate the transcriptional control mechanisms specifying the early phases of odontoblast differentiation, we analysed the DNA demethylation pattern associated with 5-hydroxymethylcytosine (5hmC) in the primary murine dental pulp. 5hmC plays an important role in chromatin accessibility and transcriptional control by modelling a dynamic equilibrium between DNA methylation and demethylation. Our research revealed 5hmC enrichment along genes and non-coding regulatory regions associated with specific developmental pathways in the genome of mouse incisor and molar dental pulp. Although the overall distribution of 5hmC is similar, the intensity and location of the 5hmC peaks significantly differs between the incisor and molar pulp genome, indicating cell type-specific epigenetic variations. Our study suggests that the differential DNA demethylation pattern could account for the distinct regulatory mechanisms underlying the tooth-specific ontogenetic programs.


Assuntos
Polpa Dentária , Incisivo , Animais , Diferenciação Celular , Genoma , Camundongos , Odontoblastos
14.
Acta Biochim Pol ; 69(1): 131-138, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226446

RESUMO

The dental pulp is a promising source of progenitor cells for regenerative medicine. The natural function of dental pulp is to produce odontoblasts to generate reparative dentin. Stem cells within the pulp tissue originate from the migrating neural crest cells and possess mesenchymal stem cell properties with the ability to differentiate into multiple lineages. To elucidate the transcriptional control mechanisms underlying cell fate determination, we compared the transcriptome and chromatin accessibility in primary dental pulp tissue derived from 5-6-day-old mice. Using RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC-seq), we correlated gene expression with chromatin accessibility. We found that the majority of ATAC-seq peaks were concentrated at genes associated with development and cell differentiation. Most of these genes were highly expressed in the mouse dental pulp. Surprisingly, we uncovered a group of genes encoding master transcription factors that were not expressed in the dental pulp but retained open chromatin states. Within this group, we identified key developmental genes important for specification of the neural crest, adipocyte, neural, myoblast, osteoblast and hepatocyte lineages. Collectively, our results uncover a complex relationship between gene expression and the chromatin accessibility landscape in the mouse dental pulp.


Assuntos
Cromatina/genética , Polpa Dentária/metabolismo , Incisivo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo , Animais , Diferenciação Celular , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Expressão Gênica , Camundongos , Odontoblastos/metabolismo , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
15.
Int J Dev Biol ; 66(7-8-9): 391-400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36942693

RESUMO

Although histone methyltransferases are implicated in many key developmental processes, the contribution of individual chromatin modifiers in dental tissues is not well understood. Using single-cell RNA sequencing, we examined the expression profiles of the disruptor of telomeric silencing 1-like (Dot1L) gene in the postnatal day 5 mouse molar dental pulp. Dot1L is the only known enzyme that methylates histone 3 on lysine 79, a modification associated with gene expression. Our research revealed 15 distinct clusters representing different populations of mesenchymal stromal cells (MSCs), immune cells, pericytes, ameloblasts and endothelial cells. We documented heterogeneity in gene expression across different subpopulations of MSCs, a good indicator that these stromal progenitors undergo different phases of osteogenic differentiation. Interestingly, although Dot1L was broadly expressed across all cell clusters within the molar dental pulp, our analyses indicated specific enrichment of Dot1L within two clusters of MSCs, as well as cell clusters characterized as ameloblasts and endothelial cells. Moreover, we detected Dot1L co-expression with protein interactors involved in epigenetic activation such as Setd2, Sirt1, Brd4, Isw1, Bptf and Suv39h1. In addition, Dot1L was co-expressed with Eed2, Cbx3 and Dnmt1, which encode epigenetic factors associated with gene silencing and heterochromatin formation. Dot1l was co-expressed with downstream targets of the insulin growth factor and WNT signaling pathways, as well as genes involved in cell cycle progression. Collectively, our results suggest that Dot1L may play key roles in orchestrating lineage-specific gene expression during MSC differentiation.


Assuntos
Metiltransferases , Fatores de Transcrição , Animais , Camundongos , Metiltransferases/genética , Metiltransferases/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Polpa Dentária/metabolismo , Células Endoteliais , Proteínas Nucleares/metabolismo , Osteogênese , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
16.
J Bone Miner Res ; 37(2): 323-339, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783080

RESUMO

Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP-cerulean/DMP1-cherry) mouse strain and mice with ectopic enamel (Spry2+/- ;Spry4-/- ), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel-facing dentin. In the odontoblasts, which produce enamel-facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum-facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Dentina , Odontoblastos , Animais , Diferenciação Celular , Epitélio , Proteínas da Matriz Extracelular/genética , Incisivo , Camundongos , Odontogênese
17.
Dev Biol ; 328(1): 13-23, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19389368

RESUMO

The mandibular arch (BA1) is critical for craniofacial development. The distal region of BA1, which gives rise to most of the mandible, is dependent upon an optimal level of bone morphogenetic protein (BMP) signaling. BMP activity is modulated in the extracellular space by BMP-binding proteins such as Twisted gastrulation (TWSG1). Twsg1(-/-) mice have a spectrum of craniofacial phenotypes, including mandibular defects that range from micrognathia to agnathia. At E9.5, the distal region of the mutant BA1 was prematurely and variably fused with loss of distal markers eHand and Msx1. Expression of proximal markers Fgf8 and Barx1 was expanded across the fused BA1. The expression of Bmp4 and Msx2 was preserved in the distal region, but shifted ventrally. While wild type embryos showed a gradient of BMP signaling with higher activity in the distal region of BA1, this gradient was disrupted and shifted ventrally in the mutants. Thus, loss of TWSG1 results in disruption of the BMP4 gradient at the level of signaling activity as well as mRNA expression. Altered distribution of BMP signaling leads to a shift in gene expression and increase in apoptosis. The extent of apoptosis may account for the variable degree of mandibular defects in Twsg1 mutants.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica no Desenvolvimento , Mandíbula/embriologia , Mandíbula/metabolismo , Proteínas/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Dev Dyn ; 238(10): 2599-613, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19777594

RESUMO

Mice lacking both Prx1 and Prx2 display severe abnormalities in the mandible. Our analysis showed that complete loss of Prx gene products leads to growth abnormalities in the mandibular processes evident as early as embryonic day (E) 10.5 associated with changes in the survival of the mesenchyme in the medial region. Changes in the gene expression in the medial and lateral regions were related to gradual loss of a subpopulation of mesenchyme in the medial region expressing eHand. Our analysis also showed that Prx gene products are required for the initiation and maintenance of chondrogenesis and terminal differentiation of the chondrocytes in the caudal and rostral ends of Meckel's cartilage. The fusion of the mandibular processes in the Prx1/Prx2 double mutants is caused by accelerated ossification. These observations together show that, during mandibular morphogenesis, Prx gene products play multiple roles including the cell survival, the region-specific terminal differentiation of Meckelian chondrocytes and osteogenesis.


Assuntos
Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Mandíbula/anatomia & histologia , Mandíbula/embriologia , Morfogênese/fisiologia , Animais , Apoptose/fisiologia , Biomarcadores/metabolismo , Cartilagem/anatomia & histologia , Cartilagem/embriologia , Diferenciação Celular/fisiologia , Proliferação de Células , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Idade Gestacional , Proteínas de Homeodomínio/genética , Hibridização In Situ , Mandíbula/anormalidades , Mandíbula/metabolismo , Mesoderma/anatomia & histologia , Mesoderma/fisiologia , Camundongos , Camundongos Knockout , Osteogênese/fisiologia
19.
Nat Commun ; 11(1): 4816, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968047

RESUMO

Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation.


Assuntos
Diferenciação Celular , Células-Tronco/citologia , Dente/citologia , Dente/crescimento & desenvolvimento , Adolescente , Adulto , Animais , Diferenciação Celular/genética , Células Epiteliais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heterogeneidade Genética , Humanos , Incisivo/citologia , Incisivo/crescimento & desenvolvimento , Masculino , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Dente Molar/citologia , Dente Molar/crescimento & desenvolvimento , Odontoblastos , Adulto Jovem
20.
Dev Biol ; 316(2): 336-49, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339367

RESUMO

To address the functions of FGFR2 and FGFR3 signaling during mandibular skeletogenesis, we over-expressed in the developing chick mandible, replication-competent retroviruses carrying truncated FGFR2c or FGFR3c that function as dominant negative receptors (RCAS-dnFGFR2 and RCAS-dnFGFR3). Injection of RCAS-dnFGFR3 between HH15 and 20 led to reduced proliferation, increased apoptosis, and decreased differentiation of chondroblasts in Meckel's cartilage. These changes resulted in the formation of a hypoplastic mandibular process and truncated Meckel's cartilage. This treatment also affected the proliferation and survival of osteoprogenitor cells in osteogenic condensations, leading to the absence of five mandibular bones on the injected side. Injection of RCAS-dnFGFR2 between HH15 and 20 or RCAS-dnFGFR3 at HH26 did not affect the morphogenesis of Meckel's cartilage but resulted in truncations of the mandibular bones. RCAS-dnFGFR3 affected the proliferation and survival of the cells within the periosteum and osteoblasts. Together these results demonstrate that FGFR3 signaling is required for the elongation of Meckel's cartilage and FGFR2 and FGFR3 have roles during intramembranous ossification of mandibular bones.


Assuntos
Cartilagem/embriologia , Mandíbula/embriologia , Morfogênese/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Animais , Células Cultivadas , Embrião de Galinha , Galinhas , Feminino , Osteogênese , Óvulo/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Deleção de Sequência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa