Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(11): 4889-4901, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730840

RESUMO

Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10 + 16, or p.R406W mutation and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer's disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels in immortalized cells and in MAPT mutant neurons, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.


Assuntos
Doença de Alzheimer , RNA Longo não Codificante , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , Grânulos de Estresse , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
2.
Acta Neuropathol ; 145(6): 749-772, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115208

RESUMO

TREM2 is an innate immune receptor expressed by microglia in the adult brain. Genetic variation in the TREM2 gene has been implicated in risk for Alzheimer's disease and frontotemporal dementia, while homozygous TREM2 mutations cause a rare leukodystrophy, Nasu-Hakola disease (NHD). Despite extensive investigation, the role of TREM2 in NHD pathogenesis remains poorly understood. Here, we investigate the mechanisms by which a homozygous stop-gain TREM2 mutation (p.Q33X) contributes to NHD. Induced pluripotent stem cell (iPSC)-derived microglia (iMGLs) were generated from two NHD families: three homozygous TREM2 p.Q33X mutation carriers (termed NHD), two heterozygous mutation carriers, one related non-carrier, and two unrelated non-carriers. Transcriptomic and biochemical analyses revealed that iMGLs from NHD patients exhibited lysosomal dysfunction, downregulation of cholesterol genes, and reduced lipid droplets compared to controls. Also, NHD iMGLs displayed defective activation and HLA antigen presentation. This defective activation and lipid droplet content were restored by enhancing lysosomal biogenesis through mTOR-dependent and independent pathways. Alteration in lysosomal gene expression, such as decreased expression of genes implicated in lysosomal acidification (ATP6AP2) and chaperone mediated autophagy (LAMP2), together with reduction in lipid droplets were also observed in post-mortem brain tissues from NHD patients, thus closely recapitulating in vivo the phenotype observed in iMGLs in vitro. Our study provides the first cellular and molecular evidence that the TREM2 p.Q33X mutation in microglia leads to defects in lysosomal function and that compounds targeting lysosomal biogenesis restore a number of NHD microglial defects. A better understanding of how microglial lipid metabolism and lysosomal machinery are altered in NHD and how these defects impact microglia activation may provide new insights into mechanisms underlying NHD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Microglia , Adulto , Humanos , Microglia/metabolismo , Metabolismo dos Lipídeos/genética , Mutação com Perda de Função , Mutação/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptor de Pró-Renina
4.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931680

RESUMO

Herpes simplex virus 1 (HSV-1) and HSV-2 are large, double-stranded DNA viruses that cause lifelong persistent infections characterized by periods of quiescence and recurrent disease. How HSV evolves within an infected individual experiencing multiple episodes of recurrent disease over time is not known. We determined the genome sequences of viruses isolated from two subjects in the Herpevac Trial for Women who experienced primary HSV-2 genital disease and compared them with sequences of viruses isolated from the subsequent fifth or sixth episode of recurrent disease in the same individuals. Each of the HSV-2 genome sequences was initially obtained using next-generation sequencing and completed with Sanger sequencing. Polymorphisms over the entire genomes were mapped, and amino acid variants resulting from nonsynonymous changes were analyzed based on the secondary and tertiary structures of a previously crystallized protein. A phylogenetic reconstruction was used to assess relationships among the four HSV-2 samples, other North American sequences, and reference sequences. Little genetic drift was detected in viruses shed by the same subjects following repeated reactivation events, suggesting strong selective pressure on the viral genome to maintain sequence fidelity during reactivations from its latent state within an individual host. Our results also demonstrate that some primary HSV-2 isolates from North America more closely resemble the HG52 laboratory strain from Scotland than the low-passage-number clinical isolate SD90e from South Africa or laboratory strain 333. Thus, one of the sequences reported here would be a logical choice as a reference strain for inclusion in future studies of North American HSV-2 isolates.IMPORTANCE The extent to which the HSV-2 genome evolves during multiple episodes of reactivation from its latent state within an infected individual is not known. We used next-generation sequencing techniques to determine whole-genome sequences of four viral samples from two subjects in the Herpevac Trial. The sequence of each subject's well-documented primary isolate was compared with the sequence of the isolate from their fifth or sixth episode of recurrent disease. Only 19 genetic polymorphisms unique to the primary or recurrent isolate were identified, 10 in subject A and 9 in subject B. These observations indicate remarkable genetic conservation between primary and recurrent episodes of HSV-2 infection and imply that strong selection pressures exist to maintain the fidelity of the viral genome during repeated reactivations from its latent state. The genome conservation observed also has implications for the potential success of a therapeutic vaccine.


Assuntos
Evolução Molecular , Genoma Viral , Herpes Genital/virologia , Herpesvirus Humano 2/genética , Ensaios Clínicos como Assunto , DNA Viral/genética , Feminino , Deriva Genética , Herpesvirus Humano 2/isolamento & purificação , Herpesvirus Humano 2/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , América do Norte , Filogenia , Polimorfismo Genético , Recidiva , Escócia , Análise de Sequência de DNA , África do Sul , Ativação Viral , Eliminação de Partículas Virais
5.
medRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909621

RESUMO

Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10+16, or p.R406W mutation, and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer’s disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.

6.
Front Mol Biosci ; 10: 1051494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845551

RESUMO

Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.

7.
PLoS One ; 14(3): e0212877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30849089

RESUMO

Herpes simplex virus 2 (HSV-2) is a large double-stranded DNA virus that causes genital sores when spread by sexual contact and is a principal cause of viral encephalitis in newborns and infants. Viral glycoproteins enable virion entry into and spread between cells, making glycoproteins a prime target for vaccine development. A truncated glycoprotein D2 (gD2) vaccine candidate, recently tested in the phase 3 Herpevac Trial for Women, did not prevent HSV-2 infection in initially seronegative women. Some women who became infected experienced multiple recurrences during the trial. The HSV US7, US8, and US9 genes encode glycoprotein I (gI), glycoprotein E (gE), and the US9 type II membrane protein, respectively. These proteins participate in viral spread across cell junctions and facilitate anterograde transport of virion components in neurons, prompting us to investigate whether sequence variants in these genes could be associated with frequent recurrence. The nucleotide sequences and dN/dS ratios of the US7-US9 region from viral isolates of individuals who experienced multiple recurrences were compared with those who had had a single episode of disease. No consistent polymorphism(s) distinguished the recurrent isolates. In frequently recurring isolates, the dN/dS ratio of US7 was low while greater variation (higher dN/dS ratio) occurred in US8, suggesting conserved function of the former during reactivation. Phylogenetic reconstruction of the US7-US9 region revealed eight strongly supported clusters within the 55 U.S. HSV-2 strains sampled, which were preserved in a second global phylogeny. Thus, although we have demonstrated evolutionary diversity in the US7-US9 complex, we found no molecular evidence of sequence variation in US7-US9 that distinguishes isolates from subjects with frequently recurrent episodes of disease.


Assuntos
Herpes Genital/virologia , Herpesvirus Humano 2/genética , Filogenia , Proteínas Virais/genética , Animais , Chlorocebus aethiops , DNA Viral/genética , DNA Viral/isolamento & purificação , Conjuntos de Dados como Assunto , Evolução Molecular , Feminino , Glicoproteínas/genética , Herpesvirus Humano 2/isolamento & purificação , Humanos , Glicoproteínas de Membrana/genética , Família Multigênica/genética , Recidiva , Células Vero , Ativação Viral/genética
8.
PLoS One ; 12(4): e0176687, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448558

RESUMO

The Herpevac Trial for Women revealed that three dose HSV-2 gD vaccine was 58% protective against culture-positive HSV-1 genital disease, but it was not protective against HSV-2 infection or disease. To determine whether vaccine-induced immune responses had selected for a particular gD sequence in strains infecting vaccine recipients compared with viruses infecting control subjects, genetic sequencing studies were carried out on viruses isolated from subjects infected with HSV-1 or HSV-2. We identified naturally occurring variants among the gD sequences obtained from 83 infected subjects. Unique or low frequency amino acid substitutions in the ectodomain of gD were found in 6 of 39 HSV-1-infected subjects and in 7 of 44 HSV-2-infected subjects. However, no consistent amino acid change was identified in isolates from gD-2 vaccine recipients compared with infected placebo recipients. gC and gE surround and partially shield gD from neutralizing antibody, and gB also participates closely in the viral entry process. Therefore, these genes were sequenced from a number of isolates to assess whether sequence variation may alter protein conformation and influence the virus strain's capacity to be neutralized by vaccine-induced antibody. gC and gE genes sequenced from HSV-1-infected subjects showed more variability than their HSV-2 counterparts. The gB sequences of HSV-1 oral isolates resembled each other more than they did gB sequences rom genital isolates. Overall, however, comparison of glycoprotein sequences of viral isolates obtained from infected subjects did not reveal any singular selective pressure on the viral cell attachment protein or surrounding glycoproteins due to administration of gD-2 vaccine.


Assuntos
Herpesvirus Humano 1/imunologia , Vacinas contra Herpesvirus , Glicoproteínas de Membrana/química , Proteínas Virais/química , Animais , Ensaios Clínicos Fase III como Assunto , Feminino , Herpesvirus Humano 1/isolamento & purificação , Humanos , Análise de Sequência de Proteína , Células Vero
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa