Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1365624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590777

RESUMO

The gut microbiome is implicated in the pathogenesis of polycystic ovary syndrome (PCOS), and prenatal androgen exposure is involved in the development of PCOS in later life. Our previous study of a mouse model of PCOS induced by prenatal dihydrotestosterone (DHT) exposure showed that the reproductive phenotype of PCOS appears from puberty, followed by the appearance of the metabolic phenotype after young adulthood, while changes in the gut microbiota was already apparent before puberty. To determine whether the prenatal or postnatal nurturing environment primarily contributes to these changes that characterize prenatally androgenized (PNA) offspring, we used a cross-fostering model to evaluate the effects of changes in the postnatal early-life environment of PNA offspring on the development of PCOS-like phenotypes and alterations in the gut microbiota in later life. Female PNA offspring fostered by normal dams (exposed to an abnormal prenatal environment only, fostered PNA) exhibited less marked PCOS-like phenotypes than PNA offspring, especially with respect to the metabolic phenotype. The gut microbiota of the fostered PNA offspring was similar to that of controls before adolescence, but differences between the fostered PNA and control groups became apparent after young adulthood. In conclusion, both prenatal androgen exposure and the postnatal early-life environment created by the DHT injection of mothers contribute to the development of PCOS-like phenotypes and the alterations in the gut microbiota that characterize PNA offspring. Thus, both the pre- and postnatal environments represent targets for the prevention of PCOS and the associated alteration in the gut microbiota in later life.

2.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155363

RESUMO

Animal gastrointestinal tracts are populated by highly diverse and complex microbiotas. The gut microbiota influences the bioavailability of dietary components and is closely associated with physiological processes in the host. Clostridium butyricum reportedly improves growth performance and affects the gut microbiota and immune functions in post-weaning piglets. However, the effects of C. butyricum on finishing pigs remain unclear. Therefore, we herein investigated the effects of C. butyricum MIYAIRI 588 (CBM588) on the gut microbiota of finishing pigs. 16S rRNA gene sequencing was performed using fecal samples and ileal, cecal, and colonic contents collected after slaughtering. The α-diversity of the small intestinal microbiota was lower than that of the large intestinal microbiota, whereas ß-diversity showed different patterns depending on sample collection sites. The administration of CBM588 did not significantly affect the α- or ß-diversity of the microbiotas of fecal and intestinal content samples regardless of the collection site. However, a linear discriminant ana-lysis Effect Size revealed that the relative abundance of Lactobacillaceae at the family level, Bifidobacterium at the order level, and Lactobacillus ruminis and Bifidobacterium pseudolongum at the species level were higher in the fecal samples and cecal and colonic contents of the treatment group than in those of the control group. Therefore, the administration of CBM588 to finishing pigs affected the composition of the gut microbiota and increased the abundance of bacteria that are beneficial to the host. These results provide important insights into the effects of probiotic administration on relatively stable gut microbial ecosystems.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Microbiota , Probióticos , Animais , Clostridium butyricum/genética , Probióticos/farmacologia , RNA Ribossômico 16S/genética , Suínos
3.
Oncoimmunology ; 11(1): 2081010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655708

RESUMO

Oral microbiota is associated with human diseases including cancer. Emerging evidence suggests that proton pump inhibitors (PPIs), which allow the oral microbiome to translocate into the gut, negatively influence the efficacy of immune checkpoint blockade (ICB) in cancer patients. However, currently there is no effective treatment that restores the decreased efficacy. To address this issue, we retrospectively evaluated 118 advanced or recurrent non-small cell lung cancer (NSCLC) patients treated with ICB and analyzed 80 fecal samples of patients with lung cancer by 16S metagenomic sequencing. Clostridium butyricum therapy using C. butyricum MIYAIRI 588 (CBM588), a live biotherapeutic bacterial strain, was shown to improve the ICB efficacy in lung cancer. Thus, we investigated how CBM588 affects the efficacy of ICB and the gut microbiota of lung cancer patients undergoing PPI treatment. We found that PPI treatment significantly decreased the efficacy of ICB in NSCLC patients, however, CBM588 significantly restored the diminished efficacy of ICB and improved survival. In addition, CBM588 prolonged overall survival in patients receiving PPIs and antibiotics together. The fecal analysis revealed that PPI users had higher abundance of harmful oral-related pathobionts and lower abundance of beneficial gut bacteria for immunotherapy. In contrast, patients who received CBM588 had lesser relative abundance of potentially harmful oral-related bacteria in the gut. Our research suggests that manipulating commensal microbiota by CBM588 may improve the therapeutic efficacy of ICB in cancer patients receiving PPIs, highlighting the potential of oral-related microbiota in the gut as a new therapeutic target for cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Clostridium butyricum , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia , Inibidores da Bomba de Prótons/efeitos adversos , Estudos Retrospectivos
4.
Cell Rep ; 41(11): 111755, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516771

RESUMO

The precise mechanism by which butyrate-producing bacteria in the gut contribute to resistance to respiratory viral infections remains to be elucidated. Here, we describe a gut-lung axis mechanism and report that orally administered Clostridium butyricum (CB) enhances influenza virus infection resistance through upregulation of interferon (IFN)-λ in lung epithelial cells. Gut microbiome-induced ω-3 fatty acid 18-hydroxy eicosapentaenoic acid (18-HEPE) promotes IFN-λ production through the G protein-coupled receptor (GPR)120 and IFN regulatory factor (IRF)-1/-7 activations. CB promotes 18-HEPE production in the gut and enhances ω-3 fatty acid sensitivity in the lungs by promoting GPR120 expression. This study finds a gut-lung axis mechanism and provides insights into the treatments and prophylaxis for viral respiratory infections.


Assuntos
Clostridium butyricum , Ácidos Graxos Ômega-3 , Infecções por Orthomyxoviridae , Humanos , Clostridium butyricum/metabolismo , Interferon lambda , Regulação para Cima , Ácidos Graxos Ômega-3/metabolismo
5.
DEN Open ; 2(1): e63, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35310733

RESUMO

Objectives: Diversion colitis (DC) is an inflammatory disorder caused by interruption of the fecal stream and subsequent nutrient deficiency from luminal bacteria. The utility of fecal microbiota transplantation (FMT) for DC was recently investigated; however, the precise pathogenesis of this condition remains unclear. This study aimed to evaluate the utility of autologous FMT in DC and to determine the related changes in the intestinal microbiota. Methods: Autologous FMT was performed to reestablish the intestinal microbiota in five patients (average age, 64.6 ± 8.3 years) with DC. They underwent double-ended colostomy. We assessed the diverted colon by endoscopy and evaluated the microbiota before and after FMT using the 16S rRNA gene sequencing method. Results: All five patients had mild inflammation (ulcerative colitis endoscopic index of severity [UCEIS] 2-3) in the diverted colon based on the colonoscopic findings. Three patients presented with symptoms, such as tenesmus, mucoid stool, and bloody stool. With FMT treatment, all patients achieved endoscopic remission (UCEIS score of 0 or 1) and symptomatic improvement. We observed a significantly decreased α-diversity in DC patients compared to healthy controls. The frequency of aerobic bacteria, such as Enterobacteriaceae, in the diverted colon decreased after autologous FMT. Conclusions: This study was the first to show that the microbiota in the diverted colon was significantly affected by autologous FMT. Since interruption of the fecal stream is central to the development of DC, FMT can be considered a promising treatment.

6.
Biomedicines ; 9(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440269

RESUMO

The gut microbiome is closely related to gut metabolic functions, and the gut microbiome and host metabolic functions affect each other. Clostridium butyricum MIYAIRI 588 (CBM 588) upregulates protectin D1 production in host colon tissue following G protein-coupled receptor (GPR) 120 activation to protect gut epithelial cells under antibiotic-induced dysbiosis. However, how CBM 588 enhances polyunsaturated fatty acid (PUFA) metabolites remains unclear. Therefore, we focused on the metabolic function alterations of the gut microbiome after CBM 588 and protectin D1 administration to reveal the interaction between the host and gut microbiome through lipid metabolism during antibiotic-induced dysbiosis. Consequently, CBM 588 modified gut microbiome and increased the butyric acid and oleic acid content. These lipid metabolic modifications induced GPR activation, which is a trigger of ERK 1/2 signaling and directed differentiation of downstream immune cells in the host colon tissue. Moreover, endogenous protectin D1 modified the gut microbiome, similar to CBM 588. This is the first study to report that CBM 588 influences the interrelationship between colon tissue and the gut microbiome through lipid metabolism. These findings provide insights into the mechanisms of prevention and recovery from inflammation and the improvement of host metabolism by CBM 588.

7.
Biochem Biophys Rep ; 25: 100892, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33458259

RESUMO

It is reported that an increase in aerobic bacteria, a lack of short-chain fatty acids (SCFAs), and immune disorders in the diverted colon are major causes of diversion colitis. However, the precise pathogenesis of this condition remains unclear. The aim of the present study was to examine the microbiota, intestinal SCFAs, and immunoglobulin A (IgA) in the diverted colon. Eight patients underwent operative procedures for colostomies. We assessed the diverted colon using endoscopy and obtained intestinal samples from the diverted colon and oral colon in these patients. We analyzed the microbiota and SCFAs of the intestinal samples. The bacterial communities were investigated using a 16S rRNA gene sequencing method. The microbiota demonstrated a change in the proportion of some species, especially Lactobacillus, which significantly decreased in the diverted colon at the genus level. We also showed that intestinal SCFA values were significantly decreased in the diverted colon. Furthermore, intestinal IgA levels were significantly increased in the diverted colon. This study was the first to show that intestinal SCFAs were significantly decreased and intestinal IgA was significantly increased in the diverted colon. Our data suggest that SCFAs affect the microbiota and may play an immunological role in diversion colitis.

8.
Biosci Microbiota Food Health ; 40(3): 150-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285860

RESUMO

Sarcopenia causes functional disorders and decreases the quality of life. Thus, it has attracted substantial attention in the aging modern world. Dysbiosis of the intestinal microbiota is associated with sarcopenia; however, it remains unclear whether prebiotics change the microbiota composition and result in the subsequent recovery of muscle atrophy in elderly patients with sarcopenia. This study aimed to assess the effects of prebiotics in super-elderly patients with sarcopenia. We analyzed the effects of 1-kestose on the changes in the intestinal microbiota and body composition using a next-generation sequencer and a multi-frequency bioimpedance analysis device. The Bifidobacterium longum population was significantly increased in the intestine after 1-kestose administration. In addition, in all six patients after 12 weeks of 1-kestose administration, the skeletal muscle mass index was greater, and the body fat percentage was lower. This is the first study to show that administration of a prebiotic increased the population of B. longum in the intestinal microbiota and caused recovery of muscle atrophy in super-elderly patients with sarcopenia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa