Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 21(11): 3003-3011, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29241530

RESUMO

ATP citrate lyase (ACL) plays a key role in regulating mitochondrial function, as well as glucose and lipid metabolism in skeletal muscle. We report here that ACL silencing impairs myoblast and satellite cell (SC) differentiation, and it is accompanied by a decrease in fast myosin heavy chain isoforms and MYOD. Conversely, overexpression of ACL enhances MYOD levels and promotes myogenesis. Myogenesis is dependent on transcriptional but also other mechanisms. We show that ACL regulates the net amount of acetyl groups available, leading to alterations in acetylation of H3(K9/14) and H3(K27) at the MYOD locus, thus increasing MYOD expression. ACL overexpression in murine skeletal muscle leads to improved regeneration after cardiotoxin-mediated damage. Thus, our findings suggest a mechanism for regulating SC differentiation and enhancing regeneration, which might be exploited for devising therapeutic approaches for treating skeletal muscle disease.


Assuntos
ATP Citrato (pro-S)-Liase/genética , Histonas/genética , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Regeneração/genética , Células Satélites de Músculo Esquelético/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Acetilação , Animais , Cardiotoxinas/toxicidade , Diferenciação Celular , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Proteína MyoD/metabolismo , Cultura Primária de Células , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais , Transcrição Gênica
2.
Skelet Muscle ; 6: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462398

RESUMO

BACKGROUND: Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. METHODS: In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. RESULTS: Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time-to-progression. CONCLUSIONS: Anti-ActRII blockade is an effective intervention against cancer cachexia providing benefit even in the presence of anti-cancer therapies. Co-treatment comprising chemotherapies and ActRII inhibitors might constitute a promising new approach to alleviate chemotherapy- and cancer-related wasting conditions and extend survival rates in cachectic cancer patients.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Receptores de Activinas Tipo II/metabolismo , Anticorpos Bloqueadores/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Caquexia/prevenção & controle , Neoplasias do Colo/complicações , Receptores de Activinas Tipo II/imunologia , Animais , Anticorpos Monoclonais Humanizados , Peso Corporal/efeitos dos fármacos , Caquexia/etiologia , Cisplatino/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Everolimo/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos
3.
Mol Cell Biol ; 34(4): 619-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24298018

RESUMO

We have previously shown that activation of Gαi2, an α subunit of the heterotrimeric G protein complex, induces skeletal muscle hypertrophy and myoblast differentiation. To determine whether Gαi2 is required for skeletal muscle growth or regeneration, Gαi2-null mice were analyzed. Gαi2 knockout mice display decreased lean body mass, reduced muscle size, and impaired skeletal muscle regeneration after cardiotoxin-induced injury. Short hairpin RNA (shRNA)-mediated knockdown of Gαi2 in satellite cells (SCs) leads to defective satellite cell proliferation, fusion, and differentiation ex vivo. The impaired differentiation is consistent with the observation that the myogenic regulatory factors MyoD and Myf5 are downregulated upon knockdown of Gαi2. Interestingly, the expression of microRNA 1 (miR-1), miR-27b, and miR-206, three microRNAs that have been shown to regulate SC proliferation and differentiation, is increased by a constitutively active mutant of Gαi2 [Gαi2(Q205L)] and counterregulated by Gαi2 knockdown. As for the mechanism, this study demonstrates that Gαi2(Q205L) regulates satellite cell differentiation into myotubes in a protein kinase C (PKC)- and histone deacetylase (HDAC)-dependent manner.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Regeneração/genética , Células Satélites de Músculo Esquelético/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Mol Cell Biol ; 34(4): 606-18, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24298022

RESUMO

The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.


Assuntos
Receptores de Activinas Tipo II/imunologia , Ativinas/metabolismo , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Hipertrofia/metabolismo , Mioblastos Esqueléticos/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animais , Anticorpos Bloqueadores/metabolismo , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Atrofia/imunologia , Atrofia/metabolismo , Diferenciação Celular/fisiologia , Humanos , Hipertrofia/patologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos Esqueléticos/imunologia , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
5.
Sci Signal ; 4(201): ra80, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22126963

RESUMO

Skeletal muscle atrophy results in loss of strength and an increased risk of mortality. We found that lysophosphatidic acid, which activates a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, stimulated skeletal muscle hypertrophy through activation of Gα(i2). Expression of a constitutively active mutant of Gα(i2) stimulated myotube growth and differentiation, effects that required the transcription factor NFAT (nuclear factor of activated T cells) and protein kinase C. In addition, expression of the constitutively active Gα(i2) mutant inhibited atrophy caused by the cachectic cytokine TNFα (tumor necrosis factor-α) by blocking an increase in the abundance of the mRNA encoding the E3 ubiquitin ligase MuRF1 (muscle ring finger 1). Gα(i2) activation also enhanced muscle regeneration and caused a switch to oxidative fibers. Our study thus identifies a pathway that promotes skeletal muscle hypertrophy and differentiation and demonstrates that Gα(i2)-induced signaling can act as a counterbalance to MuRF1-mediated atrophy, indicating that receptors that act through Gα(i2) might represent potential targets for preventing skeletal muscle wasting.


Assuntos
Diferenciação Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Mioblastos Esqueléticos/enzimologia , Regeneração , Transdução de Sinais , Animais , Ativação Enzimática/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Hipertrofia/enzimologia , Hipertrofia/genética , Hipertrofia/patologia , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mutação , Mioblastos Esqueléticos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas com Motivo Tripartido , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa