Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Plant Res ; 137(4): 659-667, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598067

RESUMO

Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4-5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.


Assuntos
Citoesqueleto de Actina , Arabidopsis , Cloroplastos , Luz , Cloroplastos/fisiologia , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Adiantum/fisiologia , Adiantum/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Actinas/metabolismo , Movimento
2.
J Plant Res ; 131(5): 803-815, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29923137

RESUMO

In plant cytokinesis, actin is thought to be crucial in cell plate guidance to the cortical division zone (CDZ), but its organization and function are not fully understood. To elucidate actin organization during cytokinesis, we employed an experimental system, in which the mitotic apparatus is displaced and separated from the CDZ by centrifugation and observed using a global-local live imaging microscope that enabled us to record behavior of actin filaments in the CDZ and the whole cell division process in parallel. In this system, returning movement of the cytokinetic apparatus in cultured-tobacco BY-2 cells occurs, and there is an advantage to observe actin organization clearly during the cytokinetic phase because more space was available between the CDZ and the distantly formed phragmoplast. Actin cables were clearly observed between the CDZ and the phragmoplast in BY-2 cells expressing GFP-fimbrin after centrifugation. Both the CDZ and the edge of the expanding phragmoplast had actin bulges. Using live-cell imaging including the global-local live imaging microscopy, we found actin filaments started to accumulate at the actin-depleted zone when cell plate expansion started even in the cell whose cell plate failed to reach the CDZ. These results suggest that specific accumulation of actin filaments at the CDZ and the appearance of actin cables between the CDZ and the phragmoplast during cell plate formation play important roles in the guidance of cell plate edges to the CDZ.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Citocinese , Nicotiana/ultraestrutura , Fuso Acromático/ultraestrutura , Citoesqueleto de Actina/fisiologia , Tamanho Celular , Células Cultivadas , Centrifugação , Proteínas de Fluorescência Verde , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fuso Acromático/fisiologia , Nicotiana/fisiologia
3.
J Bacteriol ; 195(5): 958-64, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23243308

RESUMO

Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state (13)C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains.


Assuntos
Celulase/genética , Celulase/metabolismo , Celulose/biossíntese , Celulose/química , Gluconacetobacter xylinus/metabolismo , Configuração de Carboidratos , Metabolismo dos Carboidratos , Gluconacetobacter xylinus/enzimologia , Gluconacetobacter xylinus/genética , Mutação , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Microscopy (Oxf) ; 72(4): 310-325, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37098215

RESUMO

Studies visualizing plant tissues and organs in three-dimension (3D) using micro-computed tomography (CT) published since approximately 2015 are reviewed. In this period, the number of publications in the field of plant sciences dealing with micro-CT has increased along with the development of high-performance lab-based micro-CT systems as well as the continuous development of cutting-edge technologies at synchrotron radiation facilities. The widespread use of commercially available lab-based micro-CT systems enabling phase-contrast imaging technique, which is suitable for the visualization of biological specimens composed of light elements, appears to have facilitated these studies. Unique features of the plant body, which are particularly utilized for the imaging of plant organs and tissues by micro-CT, are having functional air spaces and specialized cell walls, such as lignified ones. In this review, we briefly describe the basis of micro-CT technology first and then get down into details of its application in 3D visualization in plant sciences, which are categorized as follows: imaging of various organs, caryopses, seeds, other organs (reproductive organs, leaves, stems and petioles), various tissues (leaf venations, xylems, air-filled tissues, cell boundaries, cell walls), embolisms and root systems, hoping that wide users of microscopes and other imaging technologies will be interested also in micro-CT and obtain some hints for a deeper understanding of the structure of plant tissues and organs in 3D. Majority of the current morphological studies using micro-CT still appear to be at a qualitative level. Development of methodology for accurate 3D segmentation is needed for the transition of the studies from a qualitative level to a quantitative level in the future.


Assuntos
Imageamento Tridimensional , Plantas , Microtomografia por Raio-X , Síncrotrons , Microscopia de Contraste de Fase
5.
Planta ; 236(4): 1013-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22547029

RESUMO

Plasmodesmata are intercellular bridges that directly connect the cytoplasm of neighboring cells and play a crucial role in cell-to-cell communication and cell development in multicellular plants. Although brown algae (Phaeophyceae, Heterokontophyta) are phylogenetically distant to land plants, they nevertheless possess a complex multicellular organization that includes plasmodesmata. In this study, the ultrastructure and formation of plasmodesmata in the brown alga Dictyota dichotoma were studied using transmission electron microscopy and electron tomography with rapid freezing and freeze substitution. D. dichotoma possesses plasma membrane-lined, simple plasmodesmata without internal endoplasmic reticulum (desmotubule). This structure differs from those in land plants. Plasmodesmata were clustered in regions with thin cell walls and formed pit fields. Fine proteinaceous "internal bridges" were observed in the cavity. Ultrastructural observations of cytokinesis in D. dichotoma showed that plasmodesmata formation began at an early stage of cell division with the formation of tubular pre-plasmodesmata within membranous sacs of the cytokinetic diaphragm. Clusters of pre-plasmodesmata formed the future pit field. As cytokinesis proceeded, electron-dense material extended from the outer surface of the mid region of the pre-plasmodesmata and finally formed the nascent cell wall. From these results, we suggest that pre-plasmodesmata are associated with cell wall development during cytokinesis in D. dichotoma.


Assuntos
Parede Celular/ultraestrutura , Criopreservação , Citocinese/fisiologia , Tomografia com Microscopia Eletrônica/métodos , Phaeophyceae/ultraestrutura , Plasmodesmos/ultraestrutura , Alginatos/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Substituição ao Congelamento , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Phaeophyceae/fisiologia
6.
Ann Bot ; 110(2): 503-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22499856

RESUMO

BACKGROUND AND AIMS: The effect of environmental factors on the regulation of aerenchyma formation in rice roots has been discussed for a long time, because aerenchyma is constitutively formed under aerated conditions. To elucidate this problem, a unique method has been developed that enables sensitive detection of differences in the development of aerenchyma under two different environmental conditions. The method is tested to determine whether aerenchyma development in rice roots is affected by osmotic stress. METHODS: To examine aerenchyma formation both with and without mannitol treatment in the same root, germinating rice (Oryza sativa) caryopses were sandwiched between two agar slabs, one of which contained 270 mm of mannitol. The roots were grown touching both slabs and were thereby exposed unilaterally to osmotic stress. As a non-invasive approach, refraction contrast X-ray computed tomography (CT) using a third-generation synchrotron facility, SPring-8 (Super photon ring 8 GeV, Japan Synchrotron Radiation Research Institute), was used to visualize the three-dimensional (3-D) intact structure of aerenchyma and its formation in situ in rice roots. The effects of unilateral mannitol treatment on the development of aerenchyma were quantitatively examined using conventional light microscopy. KEY RESULTS: Structural continuity of aerenchyma was clearly visualized in 3-D in the primary root of rice and in situ using X-ray CT. Light microscopy and X-ray CT showed that the development of aerenchyma was promoted on the mannitol-treated side of the root. Detailed light microscopic analysis of cross-sections cut along the root axis from the tip to the basal region demonstrated that aerenchyma developed significantly closer to the root tip on the mannitol-treated side of the root. CONCLUSIONS: Continuity of the aerenchyma along the rice root axis was morphologically demonstrated using X-ray CT. By using this 'sandwich' method it was shown that mannitol promoted aerenchyma formation in the primary roots of rice.


Assuntos
Manitol/metabolismo , Oryza/citologia , Oryza/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Tomografia Computadorizada por Raios X/métodos , Adaptação Fisiológica , Microscopia de Polarização , Pressão Osmótica
7.
Microscopy (Oxf) ; 71(6): 364-373, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-35993532

RESUMO

Land plants have two types of shoot-supporting systems, root system and rhizoid system, in vascular plants and bryophytes. However, since the evolutionary origin of the systems is different, how much they exploit common systems or distinct systems to architect their structures is largely unknown. To understand the regulatory mechanism of how bryophytes architect the rhizoid system responding to environmental factors, we have developed the methodology to visualize and quantitatively analyze the rhizoid system of the moss, Physcomitrium patens, in 3D. The rhizoids having a diameter of 21.3 µm on the average were visualized by refraction-contrast X-ray micro-computed tomography using coherent X-ray optics available at synchrotron radiation facility SPring-8. Three types of shape (ring-shape, line and black circle) observed in tomographic slices of specimens embedded in paraffin were confirmed to be the rhizoids by optical and electron microscopy. Comprehensive automatic segmentation of the rhizoids, which appeared in three different form types in tomograms, was tested by a method using a Canny edge detector or machine learning. The accuracy of output images was evaluated by comparing with the manually segmented ground truth images using measures such as F1 score and Intersection over Union, revealing that the automatic segmentation using machine learning was more effective than that using the Canny edge detector. Thus, machine learning-based skeletonized 3D model revealed quite dense distribution of rhizoids. We successfully visualized the moss rhizoid system in 3D for the first time.


Assuntos
Microtomografia por Raio-X
8.
Microscopy (Oxf) ; 70(6): 536-544, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34264299

RESUMO

Plant roots change their morphological traits in order to adapt themselves to different environmental conditions, resulting in the alteration of the root system architecture. To understand this mechanism, it is essential to visualize the morphology of the entire root system. To reveal effects of long-term alteration of gravity environment on root system development, we have performed an experiment in the International Space Station using Arabidopsis plants and obtained dried root systems grown in rockwool slabs. The X-ray computed tomography (CT) technique using industrial X-ray scanners has been introduced to visualize the root system architecture of crop species grown in soil in 3D non-invasively. In the case of the present study, however, the root system of Arabidopsis is composed of finer roots compared with typical crop plants and rockwool is also composed of fibers having similar dimension to that of the roots. A higher spatial resolution imaging method is required for distinguishing roots from rockwool. Therefore, in the present study, we tested refraction-contrast X-ray micro-CT using coherent X-ray optics available at the beamline of the synchrotron radiation facility SPring-8 for bio-imaging. We have found that a wide field of view but with low resolution obtained at the experimental Hutch 3 of this beamline provided an overview map of the root systems, while a narrow field of view but with high resolution obtained at the experimental Hutch 1 provided an extended architecture of the secondary roots, by a clear distinction between roots and individual rockwool fibers, resulting in the successful tracing of these roots from their basal regions.

9.
Plant J ; 57(5): 819-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18980648

RESUMO

The preprophase band (PPB) marks the site on the plant cell cortex where the cell plate will fuse during the final stage of cytokinesis. Recent studies have shown that several cytoskeletal proteins are depleted at the PPB site, but the processes that bring about these changes are still unknown. We have investigated the membrane systems associated with the PPB regions of epidermal cells of onion cotyledons by means of serial thin sections and electron tomograms. In contrast with specimens preserved by chemical fixatives, our high-pressure frozen cells demonstrated the presence of large numbers of clathrin-coated pits and vesicles in the PPB regions. The vesicles were of two types: clathrin-coated and structurally related, non-coated vesicles. Quantitative analysis of the data revealed that the number of clathrin-coated pits and vesicles is higher in the PPB regions than outside of these regions. Immunofluorescent microscopy using anti-plant clathrin-antibody confirmed this result. In contrast, no differences in secretory activities were observed. We postulate that the removal of membrane proteins by endocytosis plays a role in the formation of PPB 'memory' structures.


Assuntos
Clatrina/metabolismo , Endocitose , Cebolas/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Prófase , Vesículas Revestidas por Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Invaginações Revestidas da Membrana Celular/ultraestrutura , Citocinese , Tomografia com Microscopia Eletrônica , Cebolas/citologia , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura
10.
Microscopy (Oxf) ; 68(1): 92-97, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608618

RESUMO

X-ray micro-CT is one of the most useful techniques to examine 3D cellular architecture inside dry seeds. However, the examination of imbibed seeds is difficult because immersion in water causes a decline in the image quality. Here, we examined the use of ionic liquids for specimen preparation of chemically fixed imbibed seeds of Arabidopsis. We found that treatment with high concentrations of ionic liquids after osmium tetroxide fixation helped not only to prevent the structural damage caused by seed shrinkage, but also to preserve the image quality. Under these conditions, the cellular architecture of seeds was also well maintained.


Assuntos
Arabidopsis/ultraestrutura , Sementes/ultraestrutura , Microtomografia por Raio-X/métodos , Líquidos Iônicos/química , Tetróxido de Ósmio/química
11.
Trends Cell Biol ; 27(12): 885-894, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28943203

RESUMO

Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network. Furthermore, the phragmoplast combines plant-specific features with the conserved cytokinetic processes of animals, fungi, and protists. As such, the phragmoplast represents a useful system for understanding both plant cell dynamics and the evolution of cytokinesis. We recognize that future research and knowledge transfer into other fields would benefit from standardized terminology. Here, we propose such a lexicon of terminology for specific structures and processes associated with plant cytokinesis.


Assuntos
Cromossomos de Plantas/metabolismo , Citocinese , Microtúbulos/metabolismo , Células Vegetais/metabolismo , Terminologia como Assunto , Divisão Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Modelos Biológicos
12.
Methods Mol Biol ; 1474: 233-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27515084

RESUMO

Cryofixation and freeze-substitution techniques provide excellent preservation of plant ultrastructure. The advantage of cryofixation is not only in structural preservation, as seen in the smooth plasma membrane, but also in the speed in arresting cell activity. Immunoelectron microscopy reveals the subcellular localization of molecules within cells. Immunolabeling in combination with cryofixation and freeze-substitution techniques provides more detailed information on the immunoelectron-microscopic localization of molecules in the plant cell than can be obtained from chemically fixed tissues. Here, we introduce methods for immunoelectron microscopy of cryofixed and freeze-substituted plant tissues.


Assuntos
Criopreservação/métodos , Substituição ao Congelamento/métodos , Imuno-Histoquímica/métodos , Cebolas/ultraestrutura , Células Vegetais/ultraestrutura , Inclusão do Tecido/métodos , Anticorpos/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Resinas Epóxi/química , Fixadores/química , Expressão Gênica , Glutaral/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Microscopia Imunoeletrônica/métodos , Microtomia , Cebolas/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Caules de Planta/ultraestrutura , Populus/metabolismo , Populus/ultraestrutura , Sementes/metabolismo , Sementes/ultraestrutura , Coloração e Rotulagem/métodos , Fixação de Tecidos/métodos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
Mol Biol Cell ; 27(11): 1809-20, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053663

RESUMO

The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs.


Assuntos
Citoesqueleto de Actina/metabolismo , Cotilédone/metabolismo , Microtúbulos/metabolismo , Cebolas/metabolismo , Actinas/metabolismo , Divisão Celular/fisiologia , Cotilédone/citologia , Citocinese , Citoesqueleto/metabolismo , Tomografia com Microscopia Eletrônica , Mitose , Cebolas/citologia , Prófase , Tubulina (Proteína)/metabolismo
14.
Plant Signal Behav ; 10(9): e1060385, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26237087

RESUMO

Correct positioning of the division plane is a prerequisite for plant morphogenesis. The preprophase band (PPB) is a key intracellular structure of division site determination. PPB forms in G2 phase as a broad band of microtubules (MTs) that narrows in prophase and specializes few-micrometer-wide cortical belt region, named the cortical division zone (CDZ), in late prophase. The PPB comprises several molecules, some of which act as MT band organization and others remain in the CDZ marking the correct insertion of the cell plate in telophase. Ran GTPase-activating protein (RanGAP) is accumulated in the CDZ and forms a RanGAP band in prophase. However, little is known about when and how RanGAPs gather in the CDZ, and especially with regard to their relationships to MT band formation. Here, we examined the spatial and temporal distribution of RanGAPs and MTs in the preprophase of onion root tip cells using confocal laser scanning microscopy and showed that the RanGAP band appeared in mid-prophase as the width of MT band was reduced to nearly 7 µm. Treatments with cytoskeletal inhibitors for 15 min caused thinning or broadening of the MT band but had little effects on RanGAP band in mid-prophase and most of late prophase cells. Detailed image analyses of the spatial distribution of RanGAP band and MT band showed that the RanGAP band positioned slightly beneath the MT band in mid-prophase. These results raise a possibility that RanGAP behaves differently from MTs during their band formation.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Prófase , Anticorpos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dinitrobenzenos/farmacologia , Meristema/citologia , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Cebolas/citologia , Prófase/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Análise Espaço-Temporal , Sulfanilamidas/farmacologia , Tiazolidinas/farmacologia , Tubulina (Proteína)/metabolismo
15.
Dev Growth Differ ; 22(6): 867-874, 1980.
Artigo em Inglês | MEDLINE | ID: mdl-37280802

RESUMO

When single-celled protonemata of Adiantum capillus-veneris L. were centrifuged immediately before transferring to darkness from continuous irradiation with red light, their nuclei were displaced basipetally. Both filamentous and branched protonemata were obtained. The stronger the centrifugal acceleration, the more frequently the branched protonemata were induced. The effect of centrifugation at 1,300 x g for 15 min on nuclear displacement was different at different stages of the cell cycle. In early G1 phase, the nucleus was easily displaced by centrifugation, but quickly returned to the original position after centrifugation. In late G1 phase, the nucleus was displaced, but after centrifugation it never came back to the original position. In late G2 and M phases, the nucleus was no longer displaced by the centrifugation. Premitotic positioning of the nucleus in cytokinesis took place about 5 hr before cell plate formation in all centrifugal treatments described above.

16.
Microscopy (Oxf) ; 63 Suppl 1: i8-i9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25359847

RESUMO

Precise control of the cell division plane is a prerequisite for plant development. The division site (the position of the division plane insertion) in plant cells is the site along which the cell plate margin joins the parental cell walls. How this division site is determined and established during cell division is an essential question in plant morphogenesis. Herein we demonstrate how computer tomography techniques can aid in understanding nano-machines involved in determination of the division site and in analysing air space development after cytokinesis. The preprophase band (PPB) is a cytokinetic nano-machine used to determine the plant division site. The PPB appears as a broad microtubule (MT) band in the G2 phase and the MT band narrows during the prophase to establish the specialized belt zone in the cell cortex (cortical division zone, [CDZ]). The MT band disappears at prometaphase, but some memories remain in the CDZ throughout the process of cell division, and this is the site of attachment of the newly formed cell plate. We have examined PPB development of high-pressure frozen onion cotyledon epidermis using dual-axis electron tomography. MTs as well as actin microfilaments (MFs) and membrane systems can be preserved well by high-pressure freezing [1]. Since detection of ∼100 vesicles and ∼40 MT ends was possible in a tomogram of the PPB surface (0.25 mm × 0.25 mm) obtained from 250-nm-thick tangential sections of epidermal cells, we were able to quantitatively analyze the frequencies of various types of vesicles and MT ends in the PPB [2]. The results clearly showed that endocytosis is active [2,3] and MTs are very dynamic in the late PPB. Light microscopic studies with fluorescent probes have demonstrated that actins are among the main components of PPB. Electron tomography analysis showed that one actin configuration in the PPB is a relatively short single MFs running parallel to the plasma membrane. The actin MFs connecting two adjacent MTs help to promote MT bundling. Cell plate attachment to the parental wall leads to the fusion of the newly formed middle lamellae in the cell plate to the middle lamella of parental cell wall, and a three-way junction is created. Air space develops from the three-way junction. To determine 3D arrangement of cells and air spaces, we used X-ray micro-CT at the SPring-8 synchrotron radiation facility. Using micro-CT available in BL20XU (8 keV, 0.2 µm/pixel), we were able to elucidate ∼90% of the cortical cell outlines in the hypocotyl-radicle axis of arabidopsis seeds [4] and to analyze cell geometrical properties. As the strength of the system X-ray is too strong for seed survival, we used another beam line BL20B2 (10-15 keV, 2.4-2.7 µm/pixel) to examine air space development during seed imbibition [4,5]. Using this system, we were able to detect air space development at the early imbibition stages of seeds without causing damage during seed germination. AcknowledgmentThe author would like to thank Dr. Ichirou Karahara (Univ. Toyama), Dr. L. Andrew Staehelin (Univ. Colorado), Ms. Naoko Kajimura, Dr. Akio Takaoka (Osaka Univ.), Dr. Kazuyo Misaki, Dr. Shigenobu Yonemura (RIKEN CDB), Dr. Kazuyoshi Murata (NIP), Dr. Kentaro Uesugi, Dr. Akihisa Takeuchi, Dr. Yoshio Suzuki (JASRI), Dr. Miyuki Takeuchi, Dr. Daisuke Tamaoki, Dr. Daisuke Yamauchi, and Ms. Aki Fukuda (Univ. Hyogo) for their collaborations in the work presented here.

18.
Protoplasma ; 251(6): 1347-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24671646

RESUMO

In brown algae, membrane resources for the new cell partition during cytokinesis are mainly flat cisternae (FCs) and Golgi-derived vesicles. We used electron tomography coupled with rapid freezing/freeze substitution of zygotes to clarify the structure of transient membrane compartments during cytokinesis in Silvetia zygotes. After mitosis, an amorphous membranous structure, considered to be an FC intermediate was observed near endoplasmic reticulum clusters, lying between two daughter nuclei. FCs were arrayed at the cytokinetic plane, and a tubular membranous network was formed around them. This network might be formed by the consecutive fusion of spherical vesicles that are linked to the edges of FCs to form a membranous network (MN). At the initial stage of the formation of a membranous sac (MS) from the MN, the MS had flat and swollen parts, with the latter showing membranous tunnels. Coated pits were detected with high frequency at the swollen parts of the MS. This observation indicated that membranous tunnels disappeared by recycling of excess membrane via endocytosis, and the swollen part became flat. The MN appeared at the edges of the growing MS. MN and the MN-MS complex were observed along the cytokinetic plane in several spaces. The MS expanded by the incorporation of MN or other MS in its neighborhood. With the maturation of the new cell partition membrane, the thickness of the MS became constant and the membrane cavity disappeared. The changes in the surface area and volume of the transient membrane compartment during cytokinesis were analyzed from the tomographic data.


Assuntos
Citocinese , Tomografia com Microscopia Eletrônica/métodos , Phaeophyceae/citologia , Phaeophyceae/ultraestrutura , Membrana Celular/ultraestrutura , Membranas/ultraestrutura , Zigoto/citologia , Zigoto/ultraestrutura
19.
Microscopy (Oxf) ; 62(3): 353-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23220770

RESUMO

The cotyledon of legume seeds is a storage organ that provides nutrients for seed germination and seedling growth. The spatial and temporal control of the degradation processes within cotyledons has not been elucidated. Calcium oxalate (CaOx) crystals, a common calcium deposit in plants, have often been reported to be present in legume seeds. In this study, micro-computed tomography (micro-CT) was employed at the SPring-8 facility to examine the three-dimensional distribution of crystals inside cotyledons during seed maturation and germination of Lotus miyakojimae (previously Lotus japonicus accession Miyakojima MG-20). Using this technique, we could detect the outline of the embryo, void spaces in seeds and the cotyledon venation pattern. We found several sites that strongly inhibited X-ray transmission within the cotyledons. Light and polarizing microscopy confirmed that these areas corresponded to CaOx crystals. Three-dimensional observations of dry seeds indicated that the CaOx crystals in the L. miyakojimae cotyledons were distributed along lateral veins; however, their distribution was limited to the abaxial side of the procambium. The CaOx crystals appeared at stage II (seed-filling stage) of seed development, and their number increased in dry seeds. The number of crystals in cotyledons was high during germination, suggesting that CaOx crystals are not degraded for their calcium supply. Evidence for the conservation of CaOx crystals in cotyledons during the L. miyakojimae germination process was also supported by the biochemical measurement of oxalic acid levels.


Assuntos
Oxalato de Cálcio/análise , Cotilédone/metabolismo , Sementes/metabolismo , Oxalato de Cálcio/química , Cotilédone/citologia , Germinação/fisiologia , Lotus/embriologia , Lotus/crescimento & desenvolvimento , Lotus/metabolismo , Sementes/crescimento & desenvolvimento , Microtomografia por Raio-X
20.
Methods Mol Biol ; 657: 155-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20602214

RESUMO

Cryofixation and freeze-substitution techniques preserve plant ultrastructure much better than conventional chemical fixation techniques. The advantage of cryofixation is not only in structural preservation, as seen in the smooth plasma membrane, but also in the speed in arresting cell activity. Immunoelectron microscopy reveals the subcellular localization of molecules within cells. Immunolabeling in combination with cryofixation and freeze-substitution techniques provides more detailed information on the immunoelectron-microscopic localization of molecules in the plant cell than can be obtained from chemically fixed tissues. Here, we introduce methods for immunoelectron microscopy of post-embedded, cryofixed plant tissues by applying an antibody to a thin plastic resin-embedded section prepared by cryofixation followed by freeze-substitution.


Assuntos
Criopreservação/métodos , Substituição ao Congelamento/métodos , Microscopia Imunoeletrônica/métodos , Plantas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa