Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(45): 16168-16177, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29043794

RESUMO

We carried out dynamic force manipulations in silico on a variety of coiled-coil protein fragments from myosin, chemotaxis receptor, vimentin, fibrin, and phenylalanine zippers that vary in size and topology of their α-helical packing. When stretched along the superhelical axis, all superhelices show elastic, plastic, and inelastic elongation regimes and undergo a dynamic transition from the α-helices to the ß-sheets, which marks the onset of plastic deformation. Using the Abeyaratne-Knowles formulation of phase transitions, we developed a new theoretical methodology to model mechanical and kinetic properties of protein coiled-coils under mechanical nonequilibrium conditions and to map out their energy landscapes. The theory was successfully validated by comparing the simulated and theoretical force-strain spectra. We derived the scaling laws for the elastic force and the force for α-to-ß transition, which can be used to understand natural proteins' properties as well as to rationally design novel biomaterials of required mechanical strength with desired balance between stiffness and plasticity.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Cinética , Modelos Moleculares , Transição de Fase , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa