Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(25): 4992-4998, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38709555

RESUMO

The dynamics of cyclopentadiene (CP) following optical excitation at 243 nm was investigated by time-resolved pump-probe X-ray scattering using 16.2 keV X-rays at the Linac Coherent Light Source (LCLS). We present the first ultrafast structural evidence that the reaction leads directly to the formation of bicyclo[2.1.0]pentene (BP), a strained molecule with three- and four-membered rings. The bicyclic compound decays via a thermal backreaction to the vibrationally hot CP with a time constant of 21 ± 3 ps. A minor channel leads to ring-opened structures on a subpicosecond time scale.

2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33947814

RESUMO

Intramolecular charge transfer and the associated changes in molecular structure in N,N'-dimethylpiperazine are tracked using femtosecond gas-phase X-ray scattering. The molecules are optically excited to the 3p state at 200 nm. Following rapid relaxation to the 3s state, distinct charge-localized and charge-delocalized species related by charge transfer are observed. The experiment determines the molecular structure of the two species, with the redistribution of electron density accounted for by a scattering correction factor. The initially dominant charge-localized state has a weakened carbon-carbon bond and reorients one methyl group compared with the ground state. Subsequent charge transfer to the charge-delocalized state elongates the carbon-carbon bond further, creating an extended 1.634 Å bond, and also reorients the second methyl group. At the same time, the bond lengths between the nitrogen and the ring-carbon atoms contract from an average of 1.505 to 1.465 Å. The experiment determines the overall charge transfer time constant for approaching the equilibrium between charge-localized and charge-delocalized species to 3.0 ps.

3.
J Chem Phys ; 157(16): 164305, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319419

RESUMO

We have observed details of the internal motion and dissociation channels in photoexcited carbon disulfide (CS2) using time-resolved x-ray scattering (TRXS). Photoexcitation of gas-phase CS2 with a 200 nm laser pulse launches oscillatory bending and stretching motion, leading to dissociation of atomic sulfur in under a picosecond. During the first 300 fs following excitation, we observe significant changes in the vibrational frequency as well as some dissociation of the C-S bond, leading to atomic sulfur in the both 1D and 3P states. Beyond 1400 fs, the dissociation is consistent with primarily 3P atomic sulfur dissociation. This channel-resolved measurement of the dissociation time is based on our analysis of the time-windowed dissociation radial velocity distribution, which is measured using the temporal Fourier transform of the TRXS data aided by a Hough transform that extracts the slopes of linear features in an image. The relative strength of the two dissociation channels reflects both their branching ratio and differences in the spread of their dissociation times. Measuring the time-resolved dissociation radial velocity distribution aids the resolution of discrepancies between models for dissociation proposed by prior photoelectron spectroscopy work.

4.
Faraday Discuss ; 228(0): 104-122, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33595043

RESUMO

We present a comprehensive investigation of a recently introduced method to determine transient structures of molecules in excited electronic states with sub-ångstrom resolution from time-resolved gas-phase scattering signals. The method, which is examined using time-resolved X-ray scattering data measured on the molecule N-methylmorpholine (NMM) at the Linac Coherent Light Source (LCLS), compares the experimentally measured scattering patterns against the simulated patterns corresponding to a large pool of molecular structures to determine the full set of structural parameters. In addition, we examine the influence of vibrational state distributions and find the effect negligible within the current experimental detection limits, despite that the molecules have a comparatively high internal vibrational energy. The excited state structures determined using three structure pools generated using three different computational methods are in good agreement, demonstrating that the procedure is largely independent of the computational chemistry method employed as long as the pool is sufficiently expansive in the vicinity of the sought structure and dense enough to yield good matches to the experimental patterns.

5.
Opt Express ; 28(16): 23545-23553, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752349

RESUMO

We design and realize an arrival time diagnostic for ultrashort X-ray pulses achieving unprecedented high sensitivity in the soft X-ray regime via cross-correlation with a ≈1550 nm optical laser. An interferometric detection scheme is combined with a multi-layer sample design to greatly improve the sensitivity of the measurement. We achieve up to 275% of relative signal change when exposed to 1.6 mJ/cm2 of soft X-rays at 530 eV, more than a hundred-fold improvement in sensitivity as compared to previously reported techniques. The resolution of the arrival time measurement is estimated to around 2.8 fs (rms). The demonstrated X-ray arrival time monitor paves the way for sub-10 fs-level timing jitter at high repetition rate X-ray facilities.

6.
J Chem Phys ; 151(8): 084301, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31470697

RESUMO

Pump-probe gas phase X-ray scattering experiments, enabled by the development of X-ray free electron lasers, have advanced to reveal scattering patterns of molecules far from their equilibrium geometry. While dynamic displacements reflecting the motion of wavepackets can probe deeply into the reaction dynamics, in many systems, the thermal excitation embedded in the molecules upon optical excitation and energy randomization can create systems that encompass structures far from the ground state geometry. For polyatomic molecular systems, large amplitude vibrational motions are associated with anharmonicity and shifts of interatomic distances, making analytical solutions using traditional harmonic approximations inapplicable. More generally, the interatomic distances in a polyatomic molecule are not independent and the traditional equations commonly used to interpret the data may give unphysical results. Here, we introduce a novel method based on molecular dynamic trajectories and illustrate it on two examples of hot, vibrating molecules at thermal equilibrium. When excited at 200 nm, 1,3-cyclohexadiene (CHD) relaxes on a subpicosecond time scale back to the reactant molecule, the dominant pathway, and to various forms of 1,3,5-hexatriene (HT). With internal energies of about 6 eV, the energy thermalizes quickly, leading to structure distributions that deviate significantly from their vibrationless equilibrium. The experimental and theoretical results are in excellent agreement and reveal that a significant contribution to the scattering signal arises from transition state structures near the inversion barrier of CHD. In HT, our analysis clarifies that previous inconsistent structural parameters determined by electron diffraction were artifacts that might have resulted from the use of inapplicable analytical equations.

7.
Angew Chem Int Ed Engl ; 58(19): 6371-6375, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30866169

RESUMO

Time-resolved pump-probe gas-phase X-ray scattering signals, extrapolated to zero momentum transfer, provide a measure of the number of electrons in a system, an effect that arises from the coherent addition of elastic scattering from the electrons. This allows to identify reactive transients and determine the chemical reaction kinetics without the need for extensive scattering simulations or complicated inversion of scattering data. We examine the photodissociation reaction of trimethylamine and identify two reaction paths upon excitation to the 3p state at 200 nm: a fast dissociation path out of the 3p state to the dimethyl amine radical (16.6±1.2 %) and a slower dissociation via internal conversion to the 3s state (83.4±1.2 %). The time constants for the two reactions are 640±130 fs and 74±6 ps, respectively. Additionally, it is found that the transient dimethyl amine radical has a N-C bond length of 1.45±0.02 Šand a C-N-C bond angle of 118°±4°.

8.
J Chem Phys ; 147(21): 214201, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221417

RESUMO

We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.

9.
Angew Chem Int Ed Engl ; 56(22): 6088-6092, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28374523

RESUMO

The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.

10.
Faraday Discuss ; 194: 525-536, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711844

RESUMO

We present a multifaceted investigation into the initial photodissociation dynamics of 1,4-diiodobenzene (DIB) following absorption of 267 nm radiation. We combine ultrafast time-resolved photoelectron spectroscopy and X-ray scattering experiments performed at the Linac Coherent Light Source (LCLS) to study the initial electronic excitation and subsequent rotational alignment, and interpret the experiments in light of Complete Active Space Self-Consistent Field (CASSCF) calculations of the excited electronic landscape. The initially excited state is found to be a bound 1B1 surface, which undergoes ultrafast population transfer to a nearby state in 35 ± 10 fs. The internal conversion most likely leads to one or more singlet repulsive surfaces that initiate the dissociation. This initial study is an essential and prerequisite component of a comprehensive study of the complete photodissociation pathway(s) of DIB at 267 nm. Assignment of the initially excited electronic state as a bound state identifies the mechanism as predissociative, and measurement of its lifetime establishes the time between excitation and initiation of dissociation, which is crucial for direct comparison of photoelectron and scattering experiments.

11.
J Synchrotron Radiat ; 22(3): 498-502, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931059

RESUMO

The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280-2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

12.
J Synchrotron Radiat ; 22(3): 621-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931077

RESUMO

This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm(-1) electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

13.
J Synchrotron Radiat ; 22(3): 492-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931058

RESUMO

The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump-probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

14.
J Synchrotron Radiat ; 22(3): 526-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931064

RESUMO

Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump-probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump-probe experiments to be performed at LCLS.


Assuntos
Cristalografia por Raios X/instrumentação , Lasers , Aceleradores de Partículas/instrumentação , Espectrometria por Raios X/instrumentação , Raios X , California , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Iluminação/instrumentação
15.
Nat Commun ; 15(1): 4726, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830874

RESUMO

Ultrafast electron diffraction using MeV energy beams(MeV-UED) has enabled unprecedented scientific opportunities in the study of ultrafast structural dynamics in a variety of gas, liquid and solid state systems. Broad scientific applications usually pose different requirements for electron probe properties. Due to the complex, nonlinear and correlated nature of accelerator systems, electron beam property optimization is a time-taking process and often relies on extensive hand-tuning by experienced human operators. Algorithm based efficient online tuning strategies are highly desired. Here, we demonstrate multi-objective Bayesian active learning for speeding up online beam tuning at the SLAC MeV-UED facility. The multi-objective Bayesian optimization algorithm was used for efficiently searching the parameter space and mapping out the Pareto Fronts which give the trade-offs between key beam properties. Such scheme enables an unprecedented overview of the global behavior of the experimental system and takes a significantly smaller number of measurements compared with traditional methods such as a grid scan. This methodology can be applied in other experimental scenarios that require simultaneously optimizing multiple objectives by explorations in high dimensional, nonlinear and correlated systems.

16.
J Phys Chem A ; 116(2): 810-9, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22175717

RESUMO

We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.


Assuntos
Nitrito de Amila/química , Fotólise , Raios Ultravioleta , Radicais Livres/química , Cinética , Espectrometria de Massas , Óxido Nítrico/química , Pentoxil (Uracila)/química , Espectroscopia Fotoeletrônica , Teoria Quântica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa