Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Photosynth Res ; 152(2): 207-212, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35437616

RESUMO

The temperature dependence of the formation of the g ~ 5 S2 state electron paramagnetic resonance (EPR) signal in photosystem II (PSII) was investigated. The g ~ 5 signal was produced at an illumination above 200 K. The half inhibition temperature of the formation of the g ~ 5 EPR signal was approximately 215 K. The half inhibition temperature is close to that of the transition from the S2 state-to-S3 state in the untreated PSII, and not to that of the transition from S1 state -to-S2 state in the untreated PSII. The upshift of the half inhibition temperature of the transition from the S1 state -to-S2 state (g ~ 5) reflects the structural change upon transition from the S1 state to the S2 state. The activation energy of the g ~ 5 state formation was estimated as 40.7 ± 4.4 kJ/mol, which is comparable to the reported activation energy for the S2 formation in the untreated PSII. The activation enthalpy and entropy were estimated to be 39.0 ± 4.4 kJ/mol and - 103 ± 19 J/mol K at 210 K, respectively. Based on these parameters, the formation process of the g ~ 5 state is discussed in this study.


Assuntos
Oxigênio , Complexo de Proteína do Fotossistema II , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Temperatura , Termodinâmica
2.
Photosynth Res ; 152(3): 289-295, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34826026

RESUMO

In this study, we identified two Mn2+ sites in apo-Photosystem II (PSII) using the pulsed electron-electron double resonance (PELDOR). A Mn2+ ion was bound to apo-PSII on the deactivation of the oxygen-evolving complex. The electron-electron magnetic dipole interaction of the Mn2+ to YD· was estimated to be 2.4 MHz. The site was assigned at the position between His332 and Glu189 in the D1 polypeptide, which is close to the Mn1 site in mature PS II. Using recent structures observed under electron microscopes (EM), the location of the Mn2+ site on photoactivation was reevaluated. The position between Asp170 and Glu189 in the D1 polypeptide is a good candidate for the initial high-affinity site for photoactivation. Based on a comparison with the PELDOR results, the two EM structures were evaluated.


Assuntos
Elétrons , Complexo de Proteína do Fotossistema II , Espectroscopia de Ressonância de Spin Eletrônica , Manganês/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/metabolismo , Peptídeos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
3.
Biol Cybern ; 116(3): 363-375, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35303154

RESUMO

Stochastic resonance is known as a phenomenon whereby information transmission of weak signal or subthreshold stimuli can be enhanced by additive random noise with a suitable intensity. Another phenomenon induced by applying deterministic pulsatile electric stimuli with a pulse frequency, commonly used for deep brain stimulation (DBS), was also shown to improve signal-to-noise ratio in neuron models. The objective of this study was to test the hypothesis that pulsatile high-frequency stimulation could improve the detection of both sub- and suprathreshold synaptic stimuli by tuning the frequency of the stimulation in a population of pyramidal neuron models. Computer simulations showed that mutual information estimated from a population of neural spike trains displayed a typical resonance curve with a peak value of the pulse frequency at 80-120 Hz, similar to those utilized for DBS in clinical situations. It is concluded that a "pulse-frequency-dependent resonance" (PFDR) can enhance information transmission over a broad range of synaptically connected networks. Since the resonance frequency matches that used clinically, PFDR could contribute to the mechanism of the therapeutic effect of DBS.


Assuntos
Neurônios , Células Piramidais , Potenciais de Ação/fisiologia , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Células Piramidais/fisiologia , Processos Estocásticos
4.
Biol Cybern ; 113(3): 347-356, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31004189

RESUMO

This article presents the modeling of spike trains in auditory nerve fiber (ANF) models with a one-memory self-exciting point process (SEPP) of the von Mises type. The ANF models were acoustically stimulated by a synaptic current of inner hair cells, or electrically stimulated by sinusoidally amplitude-modulated pulsatile waveforms. It has been shown that the parameters of one-memory SEPP of the von Mises type could be estimated by numerically maximizing the likelihood function from sample realizations of the spike trains in response to acoustic or electric stimulus. Furthermore, it was found that period histograms of the one-memory SEPP generated artificially on the basis of the estimated von Mises parameters agreed well with those of acoustic or electric stimulus, by performing the uniform-scores test. It implies that the waveforms of pulsatile electric stimuli should be selected such that the spike trains can be represented by one-memory SEPP of the von Mises type with appropriate parameters, efficiently carrying information to the cochlear implant user's brain, like that in acoustic stimulation of the healthy ear. The findings presented in this paper may play an important role in determining optimal parameters of pulsatile electric stimuli by using one-memory SEPP of the von Mises type, and further in the design of better cochlear prostheses.


Assuntos
Nervo Coclear/fisiologia , Simulação por Computador , Modelos Neurológicos , Condução Nervosa/fisiologia , Animais , Humanos
5.
Biochemistry ; 57(5): 494-497, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29261300

RESUMO

The light oxygen voltage-sensing (LOV) domain plays a crucial role in blue light (BL) sensing in plants and microorganisms. LOV domains are usually associated with the effector domains and regulate the activities of effector domains in a BL-dependent manner. Photozipper (PZ) is monomeric in the dark state. BL induces reversible dimerization of PZ and subsequently increases its affinity for the target DNA sequence. In this study, we report the analyses of PZ by pulsed electron-electron double resonance (PELDOR). The neutral flavin radical was formed by BL illumination in the presence of dithiothreitol in the LOV-C254S (without the bZIP domain) and PZ-C254S mutants, where the cysteine residue responsible for adduct formation was replaced with serine. The magnetic dipole interactions of 3 MHz between the neutral radicals were detected in both LOV-C254S and PZ-C254S, indicating that these mutants are dimeric in the radical state. The PELDOR simulation showed that the distance between the radical pair is close to that estimated from the dimeric crystal structure in the "light state" [Heintz, U., and Schlichting, I. (2016) eLife 5, e11860], suggesting that in the radical state, LOV domains in PZ-C254S form a dimer similar to that of LOV-C254S, which lacks the bZIP domain.


Assuntos
Fototropinas/química , Estramenópilas/química , Bases de Dados de Proteínas , Diatomáceas/química , Diatomáceas/metabolismo , Diatomáceas/efeitos da radiação , Ditiotreitol/metabolismo , Luz , Modelos Moleculares , Fototropinas/metabolismo , Conformação Proteica/efeitos da radiação , Domínios Proteicos/efeitos da radiação , Multimerização Proteica/efeitos da radiação , Estramenópilas/metabolismo , Estramenópilas/efeitos da radiação
6.
Biochim Biophys Acta Bioenerg ; 1859(5): 394-399, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524382

RESUMO

The binding site of the extrinsic protein PsbP in plant photosystem II was mapped by pulsed electron-electron double resonance, using mutant spinach PsbP (Pro20Cys, Ser82Cys, Ala111Cys, and Ala186Cys) labeled with 4-maleimido-TEMPO (MSL) spin label. The distances between the spin label and the Tyr160 neutral radical (YD) in PsbD, the D2 subunit of plant photosystem II, were 50.8 ±â€¯3.5 Å, 54.9 ±â€¯4.0 Å, 57.8 ±â€¯4.9 Å, and 58.4 ±â€¯14.1 Å, respectively. The geometry inferred from these distances was fitted to the PsbP crystal structure (PDB: 4RTI) to obtain the coordinates of YD relative to PsbP. These coordinates were then fitted under boundary conditions to the structure of cyanobacterial photosystem II (PDB: 4UB6), by rotating on Euler angles centered at fixed YD coordinates. The result proposed two models which show possible acidic amino acid residues in CP43, CP47 and D2 that can bind the basic amino acids Arg48, Lys143, and Lys160 in PsbP.


Assuntos
Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Espectroscopia de Perda de Energia de Elétrons , Spinacia oleracea/genética
7.
J Biol Chem ; 290(47): 28166-28174, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438823

RESUMO

Proton matrix ENDOR spectra were measured for Ca(2+)-depleted and Sr(2+)-substituted photosystem II (PSII) membrane samples from spinach and core complexes from Thermosynechococcus vulcanus in the S2 state. The ENDOR spectra obtained were similar for untreated PSII from T. vulcanus and spinach, as well as for Ca(2+)-containing and Sr(2+)-substituted PSII, indicating that the proton arrangements around the manganese cluster in cyanobacterial and higher plant PSII and Ca(2+)-containing and Sr(2+)-substituted PSII are similar in the S2 state, in agreement with the similarity of the crystal structure of both Ca(2+)-containing and Sr(2+)-substituted PSII in the S1 state. Nevertheless, slightly different hyperfine separations were found between Ca(2+)-containing and Sr(2+)-substituted PSII because of modifications of the water protons ligating to the Sr(2+) ion. Importantly, Ca(2+) depletion caused the loss of ENDOR signals with a 1.36-MHz separation because of the loss of the water proton W4 connecting Ca(2+) and YZ directly. With respect to the crystal structure and the functions of Ca(2+) in oxygen evolution, it was concluded that the roles of Ca(2+) and Sr(2+) involve the maintenance of the hydrogen bond network near the Ca(2+) site and electron transfer pathway to the manganese cluster.


Assuntos
Cálcio/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Manganês/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Estrôncio/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Manganês/química , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Prótons
8.
Genes Cells ; 19(4): 297-324, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24495257

RESUMO

The cyanobacterial clock proteins KaiA, KaiB and KaiC interact with each other to generate circadian oscillations. We have identified the residues of the KaiA homodimer affected through association with hexameric KaiC (KaiC6mer) using a spin-label-tagged KaiA C-terminal domain protein (KaiAc) and performing electron spin resonance (ESR) analysis. Cys substitution and/or the attachment of a spin label to residues located at the bottom area of the KaiAc concave surface, a KaiC-binding groove, hindered the association of KaiAc with KaiC6mer, suggesting that the groove likely mediates the interaction with KaiC6mer. The residues affected by KaiC6mer association were concentrated in the three areas: the concave surface, a lobe-like structure (a mobile lobe near the concave surface) and a region adjacent to both the concave surface and the mobile lobe. The distance between the two E254, D255, L258 and R252 residues located on the mobile lobe decreased after KaiC association, suggesting that the two mobile lobes approach each other during the interaction. Analyzing the molecular dynamics of KaiAc showed that these structural changes suggested by ESR analysis were possible. Furthermore, the analyses identified three asymmetries in KaiAc dynamic structures, which gave us a possible explanation of an asymmetric association of KaiAc with KaiC6mer.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas CLOCK/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Synechococcus/metabolismo , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Marcadores de Spin
9.
Biochim Biophys Acta ; 1827(10): 1165-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23774465

RESUMO

Proton matrix ENDOR was performed to investigate the protons close to the manganese cluster in oriented samples of photosystem II (PS II). Eight pairs of ENDOR signals were detected in oriented PS II membranes. At an angle of θ=0° between the membrane normal vector n and the external field H0, five pairs of ENDOR signals were exchangeable in D2O medium and three pairs were not exchangeable in D2O medium. The hyperfine splitting of 3.60MHz at θ=0° increased to 3.80MHz at θ=90°. The non-exchangeable signals with 1.73MHz hyperfine splitting at θ=0°, which were assigned to a proton in an amino acid residue, were not detected at θ=90° in oriented PS II or in non-oriented PS II. Highly resolved spectra show that only limited numbers of protons were detected by CW-ENDOR spectra, although many protons were located near the CaMn4O5 cluster. The detected exchangeable protons were proposed to arise from the protons belonging to the water molecules, labeled W1-W4 in the 1.9Å crystal structure, directly ligated to the CaMn4O5 cluster, and nearby amino-acid residue.


Assuntos
Membrana Celular/metabolismo , Manganês/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Spinacia oleracea/metabolismo , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Oxigênio/metabolismo , Água/metabolismo
10.
Biochim Biophys Acta ; 1827(3): 438-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23313805

RESUMO

Photosynthetic water splitting is catalyzed by a Mn(4)CaO(5) cluster in photosystem II, whose structure was recently determined at a resolution of 1.9Å [Umena, Y. et al. 2011, Nature, 473:55-60]. To determine the electronic structure of the Mn(4)CaO(5) cluster, pulsed electron-electron double resonance (PELDOR) measurements were performed for the tyrosine residue Y(D)() and S(2) state signals with non-oriented and oriented photosystem II (PS II) samples. Based on these measurements, the spin density distributions were calculated by comparing with the experimental results. The best fitting parameters were obtained with a model in which Mn1 has a large positive projection, Mn3 has a small positive projection, and Mn2 and Mn4 have negative projections (the numbering of Mni (i=1-4) is based on the crystal structure at a 1.9Å resolution), which yielded spin projections of 1.97, -1.20, 1.19 and -0.96 for Mn1-4 ions. The results show that the Mn1 ion, which is coordinated by H332, D342 and E189, has a valence of Mn(III) in the S(2) state. The sign of the exchange interactions J(13) is positive, and the other signs are negative.


Assuntos
Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Espectroscopia de Ressonância de Spin Eletrônica
11.
J Phys Chem B ; 127(29): 6441-6448, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37463845

RESUMO

The high-spin S2 state of the photosynthetic oxygen-evolving cluster Mn4CaO5, corresponding to the g = 4.1 signal for X-band electron paramagnetic resonance (EPR), was investigated using Q-band pulsed EPR, which detected a main peak at g = 3.10 and satellite peaks at 5.25, 4.55, and 2.80. We evaluated the spin state as the zero-field splitting of D = 0.465 cm-1 and E/D = 0.245 with S = 5/2. The temperature dependence of the T1 relaxation time revealed that the excited-state energy was 28.7 cm-1 higher than that of the S = 5/2 ground state. By comparing present quantum mechanical (QM) calculation models, a closed-cubane structure with the protonation state of two oxygens, W1 (= OH-) and W2 (= H2O), was the most probable structure for the S = 5/2 state. The three-pulse electron spin-echo envelope modulation (ESEEM) detected the nuclear signal, which was assigned to nitrogen as His332 ligated to the Mn1 ion. The obtained hyperfine constant for the nitrogen signal was significantly reduced from that in the S = 1/2 low-spin state. These results indicate that the S = 5/2 spin state arises from the closed-cubane structure.

12.
PNAS Nexus ; 2(8): pgad244, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564363

RESUMO

In photosystem II (PSII), one-electron oxidation of the most stable oxidation state of the Mn4CaO5 cluster (S1) leads to formation of two distinct states, the open-cubane S2 conformation [Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV)] with low spin and the closed-cubane S2 conformation [Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III)] with high spin. In electron paramagnetic resonance (EPR) spectroscopy, the open-cubane S2 conformation exhibits a g = 2 multiline signal. However, its protonation state remains unclear. Here, we investigated the protonation state of the open-cubane S2 conformation by calculating exchange couplings in the presence of the PSII protein environment and simulating the pulsed electron-electron double resonance (PELDOR). When a ligand water molecule, which forms an H-bond with D1-Asp61 (W1), is deprotonated at dangling Mn4(IV), the first-exited energy (34 cm-1) in manifold spin excited states aligns with the observed value in temperature-dependent pulsed EPR analyses, and the PELDOR signal is best reproduced. Consequently, the g = 2 multiline signal observed in EPR corresponds to the open-cubane S2 conformation with the deprotonated W1 (OH-).

13.
Front Microbiol ; 14: 1150353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992929

RESUMO

The recent discovery of the archaeal modified mevalonate pathway revealed that the fundamental units for isoprenoid biosynthesis (isopentenyl diphosphate and dimethylallyl diphosphate) are biosynthesized via a specific intermediate, trans-anhydromevalonate phosphate. In this biosynthetic pathway, which is unique to archaea, the formation of trans-anhydromevalonate phosphate from (R)-mevalonate 5-phosphate is catalyzed by a key enzyme, phosphomevalonate dehydratase. This archaea-specific enzyme belongs to the aconitase X family within the aconitase superfamily, along with bacterial homologs involved in hydroxyproline metabolism. Although an iron-sulfur cluster is thought to exist in phosphomevalonate dehydratase and is believed to be responsible for the catalytic mechanism of the enzyme, the structure and role of this cluster have not been well characterized. Here, we reconstructed the iron-sulfur cluster of phosphomevalonate dehydratase from the hyperthermophilic archaeon Aeropyrum pernix to perform biochemical characterization and kinetic analysis of the enzyme. Electron paramagnetic resonance, iron quantification, and mutagenic studies of the enzyme demonstrated that three conserved cysteine residues coordinate a [4Fe-4S] cluster-as is typical in aconitase superfamily hydratases/dehydratases, in contrast to bacterial aconitase X-family enzymes, which have been reported to harbor a [2Fe-2S] cluster.

14.
J Bacteriol ; 194(24): 6828-36, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23043001

RESUMO

The moderately halotolerant cyanobacterium Synechocystis sp. strain PCC 6803 contains a plasma membrane aquaporin, AqpZ. We previously reported that AqpZ plays a role in glucose metabolism under photomixotrophic growth conditions, suggesting involvement of AqpZ in cytosolic osmolarity homeostasis. To further elucidate the physiological role of AqpZ, we have studied its gene expression profile and its function in Synechocystis. The expression level of aqpZ was regulated by the circadian clock. AqpZ activity was insensitive to mercury in Xenopus oocytes and in Synechocystis, indicating that the AqpZ can be categorized as a mercury-insensitive aquaporin. Stopped-flow light-scattering spectrophotometry showed that addition of sorbitol and NaCl led to a slower decrease in cell volume of the Synechocystis ΔaqpZ strain than the wild type. The ΔaqpZ cells were more tolerant to hyperosmotic shock by sorbitol than the wild type. Consistent with this, recovery of oxygen evolution after a hyperosmotic shock by sorbitol was faster in the ΔaqpZ strain than in the wild type. In contrast, NaCl stress had only a small effect on oxygen evolution. The amount of AqpZ protein remained unchanged by the addition of sorbitol but decreased after addition of NaCl. This decrease is likely to be a mechanism to alleviate the effects of high salinity on the cells. Our results indicate that Synechocystis AqpZ functions as a water transport system that responds to daily oscillations of intracellular osmolarity.


Assuntos
Aquaporinas/metabolismo , Pressão Osmótica , Synechocystis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Tamanho Celular , Relógios Circadianos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Cloreto de Mercúrio/farmacologia , Concentração Osmolar , Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Sorbitol/farmacologia , Synechocystis/genética , Água/metabolismo
15.
PNAS Nexus ; 1(5): pgac221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712340

RESUMO

In photosystem II (PSII), one-electron oxidation of the most stable state of the oxygen-evolving Mn4CaO5 cluster (S1) leads to the S2 state formation, Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV) (open-cubane S2) or Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III) (closed-cubane S2). In electron paramagnetic resonance (EPR) spectroscopy, the g = 4.1 signal is not observed in cyanobacterial PSII but in plant PSII, whereas the g = 4.8 signal is observed in cyanobacterial PSII and extrinsic-subunit-depleted plant PSII. Here, we investigated the closed-cubane S2 conformation, a candidate for a higher spin configuration that accounts for g > 4.1 EPR signal, considering all pairwise exchange couplings in the PSII protein environment (i.e. instead of considering only a single exchange coupling between the [Mn3(CaO4)] cubane region and the dangling Mn4 site). Only when a ligand water molecule that forms an H-bond with D1-Asp61 (W1) is deprotonated at dangling Mn4(IV), the g = 4.1 EPR spectra can be reproduced using the cyanobacterial PSII crystal structure. The closed-cubane S2 is less stable than the open-cubane S2 in cyanobacterial PSII, which may explain why the g = 4.1 EPR signal is absent in cyanobacterial PSII.

16.
Commun Biol ; 5(1): 453, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552531

RESUMO

Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have been scarcely reported. Here we show that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1-8 Hz, which is three or more times weaker than the geomagnetic field, reduces mitochondrial mass to 70% and the mitochondrial electron transport chain (ETC) complex II activity to 88%. Chemical inhibition of electron flux through the mitochondrial ETC complex II nullifies the effect of ELF-WMF. Suppression of ETC complex II subsequently induces mitophagy by translocating parkin and PINK1 to the mitochondria and by recruiting LC3-II. Thereafter, mitophagy induces PGC-1α-mediated mitochondrial biogenesis to rejuvenate mitochondria. The lack of PINK1 negates the effect of ELF-WMF. Thus, ELF-WMF may be applicable for the treatment of human diseases that exhibit compromised mitochondrial homeostasis, such as Parkinson's disease.


Assuntos
Mitofagia , Proteínas Quinases , Humanos , Campos Magnéticos , Mitocôndrias , Biogênese de Organelas
17.
Biochemistry ; 50(13): 2506-14, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21338049

RESUMO

Photosynthetic O(2) evolution takes place at the Mn cluster in photosystem II (PSII) by oxidation of water. It has been proposed that ammonia, one of water analogues, functions as an inhibitor of O(2) evolution at alkaline pH. However, the detailed mechanism of inhibition has not been understood yet. In this study, we investigated the mechanism of ammonia inhibition by examining the NH(4)Cl-induced inhibition of O(2) evolution in a wide pH range (pH 5.0-8.0) and by detecting the interaction site using Fourier transform infrared (FTIR) spectroscopy. In addition to intact PSII membranes from spinach, PSII membranes depleted of the PsbP and PsbQ extrinsic proteins were used as samples to avoid the effect of the release of these proteins by salt treatments. In both types of samples, oxygen evolution activity decreased by approximately 40% by addition of 100 mM NH(4)Cl in the range of pH 5.0-8.0. The presence of inhibition at acidic pH without significant pH dependence strongly suggests that NH(4)(+) cation functions as a major inhibitor in the acidic pH region, where neutral NH(3) scarcely exists in the buffer. The NH(4)Cl treatment at pH 6.5 and 5.5 induced prominent changes in the COO(-) stretching regions in FTIR difference spectra upon the S(1) → S(2) transition measured at 283 K. The NH(4)Cl concentration dependence of the amplitude of the spectral changes showed a good correlation with that of the inhibition of O(2) evolution. From this observation, it is proposed that NH(4)(+) cation interacts with carboxylate groups coupled to the Mn cluster as direct ligands or proton transfer mediators, causing inhibition of the O(2) evolving reaction.


Assuntos
Cloreto de Amônio/metabolismo , Cloreto de Amônio/farmacologia , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/enzimologia , Concentração Osmolar , Oxigênio/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Spinacia oleracea/enzimologia
18.
Genes Cells ; 15(3): 269-80, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20113360

RESUMO

In cyanobacteria, three clock proteins, KaiA, KaiB and KaiC, play essential roles in generating circadian oscillations. The interactions of these proteins change during the circadian cycle. Here, we demonstrated direct interaction between KaiA and KaiB using electron spin resonance spectroscopy. We prepared cystein (Cys)-substituted mutants of Thermosynechococcus elongatus KaiB, labeled specifically their Cys residues with spin labels and measured the ESR spectra of the labeled KaiB. We found that KaiB labeled at the 64th residue showed spectral changes in the presence of KaiA, but not in the presence of KaiC or bovine serum albumin as a negative control. KaiB labeled at the 101st residue showed no such spectral changes even in the presence of KaiA. The results suggest that KaiB interacts with KaiA in the vicinity of the 64th residue of KaiB. Further analysis demonstrated that the C-terminal clock-oscillator domain of KaiA is responsible for this interaction.


Assuntos
Proteínas de Bactérias/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/química , Proteínas de Bactérias/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Mutação , Ligação Proteica , Proteínas Recombinantes/química , Marcadores de Spin , Temperatura
19.
iScience ; 24(2): 102059, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554065

RESUMO

In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation.

20.
Biochemistry ; 49(44): 9638-48, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20886813

RESUMO

Rhodococcus rhodochrous J1 produces high- and low-molecular mass nitrile hydratases (H-NHase and L-NHase, respectively), depending on the inducer. The incorporation of cobalt into L-NHase has been found to depend on the α-subunit exchange between cobalt-free L-NHase (apo-L-NHase) and its cobalt-containing mediator, NhlAE (holo-NhlAE), this novel mode of post-translational maturation having been named self-subunit swapping and NhlE having been recognized as a self-subunit swapping chaperone. We discovered an H-NHase maturation mediator, NhhAG, consisting of NhhG and the α-subunit of H-NHase. The incorporation of cobalt into H-NHase was confirmed to be dependent on self-subunit swapping. For the first time, particles larger than apo-H-NHase were observed during the swapping process via dynamic light scattering measurements, suggesting the formation of intermediate complexes. On the basis of these findings, we initially proposed a possible mechanism for self-subunit swapping. Electron paramagnetic resonance analysis demonstrated that the coordination environment of a cobalt ion in holo-NhhAG is subtly different from that in H-NHase. Cobalt is inserted into cobalt-free NhhAG (apo-NhhAG) but not into apo-H-NHase, suggesting that NhhG functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, α-subunit swapping did not occur between apo-L-NHase and holo-NhhAG or between apo-H-NHase and holo-NhlAE in vitro. These findings revealed that self-subunit swapping is a subunit-specific reaction.


Assuntos
Hidroliases/química , Hidroliases/metabolismo , Rhodococcus/enzimologia , Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Metaloproteínas/metabolismo , Peso Molecular , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rhodococcus/química , Rhodococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa