Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Nature ; 605(7911): 687-695, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614246

RESUMO

The study and application of transition metal hydrides (TMHs) has been an active area of chemical research since the early 1960s1, for energy storage, through the reduction of protons to generate hydrogen2,3, and for organic synthesis, for the functionalization of unsaturated C-C, C-O and C-N bonds4,5. In the former instance, electrochemical means for driving such reactivity has been common place since the 1950s6 but the use of stoichiometric exogenous organic- and metal-based reductants to harness the power of TMHs in synthetic chemistry remains the norm. In particular, cobalt-based TMHs have found widespread use for the derivatization of olefins and alkynes in complex molecule construction, often by a net hydrogen atom transfer (HAT)7. Here we show how an electrocatalytic approach inspired by decades of energy storage research can be made use of in the context of modern organic synthesis. This strategy not only offers benefits in terms of sustainability and efficiency but also enables enhanced chemoselectivity and distinct, tunable reactivity. Ten different reaction manifolds across dozens of substrates are exemplified, along with detailed mechanistic insights into this scalable electrochemical entry into Co-H generation that takes place through a low-valent intermediate.

2.
J Am Chem Soc ; 146(7): 4872-4882, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324710

RESUMO

The first general enantioselective alkyl-Nozaki-Hiyama-Kishi (NHK) coupling reactions are disclosed herein by employing a Cr-electrocatalytic decarboxylative approach. Using easily accessible aliphatic carboxylic acids (via redox-active esters) as alkyl nucleophile synthons, in combination with aldehydes and enabling additives, chiral secondary alcohols are produced in a good yield with high enantioselectivity under mild reductive electrolysis. This reaction, which cannot be mimicked using stoichiometric metal or organic reductants, tolerates a broad range of functional groups and is successfully applied to dramatically simplify the synthesis of multiple medicinally relevant structures and natural products. Mechanistic studies revealed that this asymmetric alkyl e-NHK reaction was enabled by using catalytic tetrakis(dimethylamino)ethylene, which acts as a key reductive mediator to mediate the electroreduction of the CrIII/chiral ligand complex.

3.
Chem Rev ; 122(3): 3180-3218, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34797053

RESUMO

Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.


Assuntos
Elementos de Transição , Catálise , Técnicas de Química Sintética , Eletroquímica , Metais
4.
J Am Chem Soc ; 145(29): 16130-16141, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433081

RESUMO

Ni-catalyzed electrochemical aryl amination (e-amination) is an attractive, emerging approach to building C-N bonds. Here, we report in-depth experimental and computational studies that examined the mechanism of Ni-catalyzed e-amination reactions. Key NiII-amine dibromide and NiII aryl amido intermediates were chemically synthesized and characterized. The combination of experiments and DFT calculations suggest (1) there is coordination of an amine to the NiII catalyst before the cathodic reduction and oxidative addition steps, (2) a stable NiII aryl amido intermediate is produced from the cathodic half-reaction, a critical step in controlling the selectivity between cross-coupling and undesired homo-coupling reaction pathways, (3) the diazabicycloundecene additive shifts the aryl halide oxidative addition mechanism from a NiI-based pathway to a Ni0-based pathway, and (4) redox-active bromide in the supporting electrolyte functions as a redox mediator to promote the oxidation of the stable NiII aryl amido intermediate to a NiIII aryl amido intermediate. Subsequently, the NiIII aryl amido intermediate undergoes facile reductive elimination to provide a C-N cross-coupling product at room temperature. Overall, our results provide new fundamental understandings about this e-amination reaction and guidance for further development of other Ni-catalyzed electrosynthetic reactions such as C-C and C-O cross-couplings.

5.
J Am Chem Soc ; 145(32): 17665-17677, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530748

RESUMO

The utility of transition metal hydride catalyzed hydrogen atom transfer (MHAT) has been widely demonstrated in organic transformations such as alkene isomerization and hydrofunctionalization reactions. However, the highly reactive nature of the hydride and radical intermediates has hindered mechanistic insight into this pivotal reaction. Recent advances in electrochemical MHAT have opened up the possibility for new analytical approaches for mechanistic diagnosis. Here, we report a voltammetric interrogation of Co-based MHAT reactivity, describing in detail the oxidative formation and reactivity of the key Co-H intermediate and its reaction with aryl alkenes. Insights from cyclic voltammetry and finite element simulations help elucidate the rate-limiting step as metal hydride formation, which we show to be widely tunable based on ligand design. Voltammetry is also suggestive of the formation of Co-alkyl intermediates and a dynamic equilibrium with the reactive neutral radical. These mechanistic studies provide information for the design of future hydrofunctionalization reactions, such as catalyst and silane choice, the relative stability of metal-alkyl species, and how hydrofunctionalization reactions utilize Co-alkyl intermediates. In summary, these studies establish an important template for studying MHAT reactions from the perspective of electrochemical kinetic frameworks.

6.
J Comput Chem ; 44(31): 2414-2423, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615205

RESUMO

Time-dependent density functional theory (TDDFT) was applied to gain insights into the electronic and vibrational spectroscopic properties of an important electron transport mediator, methyl viologen (MV2+ ). An organic dication, MV2+ has numerous applications in electrochemistry that include energy conversion and storage, environmental remediation, and chemical sensing and electrosynthesis. MV2+ is easily reduced by a single electron transfer to form a radical cation species (MV•+ ), which has an intense UV-visible absorption near 600 nm. The redox properties of the MV2+ /MV•+ couple and light-sensitivity of MV•+ have made the system appealing for photo-electrochemical energy conversion (e.g., solar hydrogen generation from water) and the study of photo-induced charge transfer processes through electronic absorption and resonance Raman spectroscopic measurements. The reported work applies leading TDDFT approaches to investigate the electronic and vibrational spectroscopic properties of MV2+ and MV•+ . Using a conventional hybrid exchange functional (B3-LYP) and a long-range corrected hybrid exchange functional (ωB97X-D3), including with a conductor-like polarizable continuum model to account for solvation, the electronic absorption and resonance Raman spectra predicted are in good agreement with experiment. Also analyzed are the charge transfer character and natural transition orbitals derived from the TDDFT vertical excitations calculated. The findings and models developed further the understanding of the electronic properties of viologens and related organic redox mediators important in renewable energy applications and serve as a reference for guiding the interpretation of electronic absorption and Raman spectra of the ions.

7.
Faraday Discuss ; 247(0): 147-158, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37489255

RESUMO

Transition metal catalysis hinges on the formation of metal-carbon bonds during catalytic cycles. The stability and reactivity of these bonds are what determine product chemo-, regio-, and enantioselectivity. The advent of electrosynthetic methodologies has placed the current understanding of these metal-alkyl bonds into a new environment of charged species and electrochemically induced reactivity. In this paper, we explore the often neglected impact of supporting electrolyte on homogeneous electrocatalytic mechanisms using the catalytic reduction of benzyl chlorides via Co and Fe tetraphenylporphyrins as a model reaction. The mechanism of this reaction is confirmed to proceed through the formation of the metal-alkyl intermediates. Critically, the stability of these intermediates, in both the Co and Fe systems, is found to be affected by the hydrodynamic radius of the supporting electrolyte, leading to differences in electrolyte-solvent shell. These studies provide important information for the design of electrosynthetic reactions, and provide a starting point for the rational design of functional supporting electrolytes.

8.
Proc Natl Acad Sci U S A ; 117(23): 12550-12557, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513683

RESUMO

Energy storage is an integral part of modern society. A contemporary example is the lithium (Li)-ion battery, which enabled the launch of the personal electronics revolution in 1991 and the first commercial electric vehicles in 2010. Most recently, Li-ion batteries have expanded into the electricity grid to firm variable renewable generation, increasing the efficiency and effectiveness of transmission and distribution. Important applications continue to emerge including decarbonization of heavy-duty vehicles, rail, maritime shipping, and aviation and the growth of renewable electricity and storage on the grid. This perspective compares energy storage needs and priorities in 2010 with those now and those emerging over the next few decades. The diversity of demands for energy storage requires a diversity of purpose-built batteries designed to meet disparate applications. Advances in the frontier of battery research to achieve transformative performance spanning energy and power density, capacity, charge/discharge times, cost, lifetime, and safety are highlighted, along with strategic research refinements made by the Joint Center for Energy Storage Research (JCESR) and the broader community to accommodate the changing storage needs and priorities. Innovative experimental tools with higher spatial and temporal resolution, in situ and operando characterization, first-principles simulation, high throughput computation, machine learning, and artificial intelligence work collectively to reveal the origins of the electrochemical phenomena that enable new means of energy storage. This knowledge allows a constructionist approach to materials, chemistries, and architectures, where each atom or molecule plays a prescribed role in realizing batteries with unique performance profiles suitable for emergent demands.

9.
Sensors (Basel) ; 23(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430547

RESUMO

The use of enzyme-based biosensors for the detection and quantification of analytes of interest such as contaminants of emerging concern, including over-the-counter medication, provides an attractive alternative compared to more established techniques. However, their direct application to real environmental matrices is still under investigation due to the various drawbacks in their implementation. Here, we report the development of bioelectrodes using laccase enzymes immobilized onto carbon paper electrodes modified with nanostructured molybdenum disulfide (MoS2). The laccase enzymes were two isoforms (LacI and LacII) produced and purified from the fungus Pycnoporus sanguineus CS43 that is native to Mexico. A commercial purified enzyme from the fungus Trametes versicolor (TvL) was also evaluated to compare their performance. The developed bioelectrodes were used in the biosensing of acetaminophen, a drug widely used to relieve fever and pain, and of which there is recent concern about its effect on the environment after its final disposal. The use of MoS2 as a transducer modifier was evaluated, and it was found that the best detection was achieved using a concentration of 1 mg/mL. Moreover, it was found that the laccase with the best biosensing efficiency was LacII, which achieved an LOD of 0.2 µM and a sensitivity of 0.108 µA/µM cm2 in the buffer matrix. Moreover, the performance of the bioelectrodes in a composite groundwater sample from Northeast Mexico was analyzed, achieving an LOD of 0.5 µM and a sensitivity of 0.015 µA/µM cm2. The LOD values found are among the lowest reported for biosensors based on the use of oxidoreductase enzymes, while the sensitivity is the highest currently reported.


Assuntos
Acetaminofen , Água Subterrânea , Lacase , Molibdênio , Trametes , Eletrodos , Carbono
10.
Angew Chem Int Ed Engl ; 62(46): e202307780, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37428529

RESUMO

Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.


Assuntos
Eletricidade , Biocatálise
11.
J Am Chem Soc ; 144(43): 20056-20066, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36265077

RESUMO

The catalysis by a π-allyl-Co/Ni complex has drawn significant attention recently due to its distinct reactivity in reductive Co/Ni-catalyzed allylation reactions. Despite significant success in reaction development, the critical oxidative addition mechanism to form the π-allyl-Co/Ni complex remains unclear. Herein, we present a study to investigate this process with four catalysis-relevant complexes: Co(MeBPy)Br2, Co(MePhen)Br2, Ni(MeBPy)Br2, and Ni(MePhen)Br2. Enabled by an electroanalytical platform, Co(I)/Ni(I) species were found responsible for the oxidative addition of allyl acetate. Kinetic features of different substrates were characterized through linear free-energy relationship (Hammett-type) studies, statistical modeling, and a DFT computational study. In this process, a coordination-ionization-type transition state was proposed, sharing a similar feature with Pd(0)-mediated oxidative addition in Tsuji-Trost reactions. Computational and ligand structural analysis studies support this mechanism, which should provide key information for next-generation catalyst development.


Assuntos
Ciência de Dados , Estresse Oxidativo , Catálise , Oxirredução , Cinética
12.
J Am Chem Soc ; 144(9): 4047-4056, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35073694

RESUMO

Petroleum hydrocarbons are our major energy source and an important feedstock for the chemical industry. With the exception of combustion, the deep conversion of chemically inert hydrocarbons to more valuable chemicals is of considerable interest. However, two challenges hinder this conversion. One is the regioselective activation of inert carbon-hydrogen (C-H) bonds. The other is designing a pathway to realize this complicated conversion. In response to the two challenges, a multistep bioelectrocatalytic system was developed to realize the one-pot deep conversion from heptane to N-heptylhepan-1-imine under mild conditions. First, in this enzymatic cascade, a bioelectrocatalytic C-H bond oxyfunctionalization step based on alkane hydroxylase (alkB) was applied to regioselectively convert heptane to 1-heptanol. By integrating subsequent alcohol oxidation and bioelectrocatalytic reductive amination steps based on an engineered choline oxidase (AcCO6) and a reductive aminase (NfRedAm), the generated 1-heptanol was successfully converted to N-heptylhepan-1-imine. The electrochemical architecture provided sufficient electrons to drive the bioelectrocatalytic C-H bond oxyfunctionalization and reductive amination steps with neutral red (NR) as electron mediator. The highest concentration of N-heptylhepan-1-imine achieved was 0.67 mM with a Faradaic efficiency of 45% for C-H bond oxyfunctionalization and 70% for reductive amination. Hexane, octane, and ethylbenzene were also successfully converted to the corresponding imines. Via regioselective C-H bond oxyfunctionalization, intermediate oxidation, and reductive amination, the bioelectrocatalytic hydrocarbon deep conversion system successfully realized the challenging conversion from inert hydrocarbons to imines that would have been impossible by using organic synthesis methods and provided a new methodology for the comprehensive conversion and utilization of inert hydrocarbons.


Assuntos
Hidrocarbonetos , Iminas , Aminação , Heptanos , Heptanol , Iminas/química
13.
Chemistry ; 28(70): e202202147, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36164261

RESUMO

Cyanopyridines and cyanophenylpyridines were investigated as anolytes for nonaqueous redox flow batteries (RFBs). The three isomers of cyanopyridine are reduced at potentials of -2.2 V or lower vs. ferrocene+/0 (Fc+/0 ), but the 3-CNPy⋅- radical anion forms a sigma-dimer that is re-oxidized at E≈-1.1 V, which would lead to poor voltaic efficiency in a RFB. Bulk electrochemical charge-discharge cycling of the cyanopyridines in acetonitrile and 0.50 M [NBu4 ][PF6 ] shows that 2-CNPy and 4-CNPy lose capacity quickly under these conditions, due to irreversible chemical reaction/decomposition of the radical anions. Density-functional theory (DFT) calculations indicated that adding a phenyl group to the cyanopyridines would, for some isomers, limit dimerization and improve the stability of the radical anions, while shifting their E1/2 only about +0.10 V relative to the parent cyanopyridines. Among the cyanophenylpyridines, 3-CN-6-PhPy and 3-CN-4-PhPy are the most promising as anolytes. They exhibit reversible reductions at E1/2 =-2.19 and -2.22 V vs. ferrocene+/0 , respectively, and retain about half of their capacity after 30 bulk charge-discharge cycles. An improved version of 3-CN-6-PhPy with three methyl groups (3-cyano-4-methyl-6-(3,5-dimethylphenyl)pyridine) has an extremely low reduction potential of -2.50 V vs. Fc+/0 (the lowest reported for a nonaqueous RFB anolyte) and loses only 0.21 % of capacity per cycle during charge-discharge cycling in acetonitrile.

14.
Annu Rev Phys Chem ; 72: 467-488, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33503384

RESUMO

Enzyme cascades are plentiful in nature, but they also have potential in artificial applications due to the possibility of using the target substrate in biofuel cells, electrosynthesis, and biosensors. Cascade reactions from enzymes or hybrid bioorganic catalyst systems exhibit extended substrate range, reaction depth, and increased overall performance. This review addresses the strategies of cascade biocatalysis and bioelectrocatalysis for (a) CO2 fixation, (b) high value-added product formation, (c) sustainable energy sources via deep oxidation, and (d) cascaded electrochemical enzymatic biosensors. These recent updates in the field provide fundamental concepts, designs of artificial electrocatalytic oxidation-reduction pathways (using a flexible setup involving organic catalysts and engineered enzymes), and advances in hybrid cascaded sensors for sensitive analyte detection.


Assuntos
Enzimas/química , Biocatálise , Técnicas Biossensoriais , Catálise , Eletroquímica , Enzimas/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Oxirredução
15.
Faraday Discuss ; 233(0): 295-302, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34889330

RESUMO

Protein-protein interactions occur in a wide range of biological processes and are of great significance to life function. Characterization of transient protein-protein interactions remains a significant barrier to our understanding of cellular processes. Nanopores provide unique nanoscale environments that accommodate single molecules from the surrounding bulk solution. This method permits label-free sensing at the single-molecule level with extremely high sensitivity. Herein, the interaction between a single P450cam monooxygenase and its redox partner putidaredoxin (Pdx) was monitored via transient ionic current by using functionalized glass nanopores. Results show that the volume of P450cam determines the blockage current while the interactions between the P450cam and Pdx give a long blockage duration. Our glass nanopore sensor with adjustable diameter could be applied for real-time sensing of protein-protein interactions between individual proteins with a wide range of molecular weight.


Assuntos
Cânfora 5-Mono-Oxigenase , Nanoporos , Cânfora 5-Mono-Oxigenase/metabolismo , Transporte de Elétrons , Ferredoxinas , Oxigenases de Função Mista/metabolismo
16.
Chem Rev ; 120(23): 12903-12993, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050699

RESUMO

Bioelectrocatalysis is an interdisciplinary research field combining biocatalysis and electrocatalysis via the utilization of materials derived from biological systems as catalysts to catalyze the redox reactions occurring at an electrode. Bioelectrocatalysis synergistically couples the merits of both biocatalysis and electrocatalysis. The advantages of biocatalysis include high activity, high selectivity, wide substrate scope, and mild reaction conditions. The advantages of electrocatalysis include the possible utilization of renewable electricity as an electron source and high energy conversion efficiency. These properties are integrated to achieve selective biosensing, efficient energy conversion, and the production of diverse products. This review seeks to systematically and comprehensively detail the fundamentals, analyze the existing problems, summarize the development status and applications, and look toward the future development directions of bioelectrocatalysis. First, the structure, function, and modification of bioelectrocatalysts are discussed. Second, the essentials of bioelectrocatalytic systems, including electron transfer mechanisms, electrode materials, and reaction medium, are described. Third, the application of bioelectrocatalysis in the fields of biosensors, fuel cells, solar cells, catalytic mechanism studies, and bioelectrosyntheses of high-value chemicals are systematically summarized. Finally, future developments and a perspective on bioelectrocatalysis are suggested.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Catálise , Eletrodos , Oxirredução
17.
J Am Chem Soc ; 143(20): 7859-7867, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983721

RESUMO

The site-specific oxidation of strong C(sp3)-H bonds is of uncontested utility in organic synthesis. From simplifying access to metabolites and late-stage diversification of lead compounds to truncating retrosynthetic plans, there is a growing need for new reagents and methods for achieving such a transformation in both academic and industrial circles. One main drawback of current chemical reagents is the lack of diversity with regard to structure and reactivity that prevents a combinatorial approach for rapid screening to be employed. In that regard, directed evolution still holds the greatest promise for achieving complex C-H oxidations in a variety of complex settings. Herein we present a rationally designed platform that provides a step toward this challenge using N-ammonium ylides as electrochemically driven oxidants for site-specific, chemoselective C(sp3)-H oxidation. By taking a first-principles approach guided by computation, these new mediators were identified and rapidly expanded into a library using ubiquitous building blocks and trivial synthesis techniques. The ylide-based approach to C-H oxidation exhibits tunable selectivity that is often exclusive to this class of oxidants and can be applied to real-world problems in the agricultural and pharmaceutical sectors.


Assuntos
Compostos de Amônio/química , Técnicas Eletroquímicas , Estrutura Molecular , Oxirredução
18.
Langmuir ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132548

RESUMO

Photobioelectrocatalysis (PBEC) adopts the sophistication and sustainability of photosynthetic units to convert solar energy into electrical energy. However, the electrically insulating outer membranes of photosynthetic units hinder efficient extracellular electron transfer from photosynthetic redox centers to an electrode in photobioelectrocatalytic systems. Among the artificial redox-mediating approaches used to enhance electrochemical communication at this biohybrid interface, conducting redox polymers (CRPs) are characterized by high intrinsic electric conductivities for efficient charge transfer. A majority of these CRPs constitute peripheral redox pendants attached to a conducting backbone by a linker. The consequently branched CRPs necessitate maintaining synergistic interactions between the pendant, linker, and backbone for optimal mediator performance. Herein, an unbranched, metal-free CRP, polydihydroxy aniline (PDHA), which has its redox moiety embedded in the polymer mainchain, is used as an exogenous redox mediator and an immobilization matrix at the biohybrid interface. As a proof of concept, the relatively complex membrane system of spinach chloroplasts is used as the photobioelectrocatalyst of choice. A "mixed" deposition of chloroplasts and PDHA generated a 2.4-fold photocurrent density increment. An alternative "layered" PDHA-chloroplast deposition, which was used to control panchromatic light absorbance by the intensely colored PDHA competing with the photoactivity of chloroplasts, generated a 4.2-fold photocurrent density increment. The highest photocurrent density recorded with intact chloroplasts was achieved by the "layered" deposition when used in conjunction with the diffusible redox mediator 2,6-dichlorobenzoquinone (-48 ± 3 µA cm-2). Our study effectively expands the scope of germane CRPs in PBEC, emphasizing the significance of the rational selection of CRPs for electrically insulating photobioelectrocatalysts and of the holistic modulation of the CRP-mediated biohybrids for optimal performance.

19.
Photochem Photobiol Sci ; 20(10): 1333-1356, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34550560

RESUMO

Photobioelectrocatalysis has recently attracted particular research interest owing to the possibility to achieve sunlight-driven biosynthesis, biosensing, power generation, and other niche applications. However, physiological incompatibilities between biohybrid components lead to poor electrical contact at the biotic-biotic and biotic-abiotic interfaces. Establishing an electrochemical communication between these different interfaces, particularly the biocatalyst-electrode interface, is critical for the performance of the photobioelectrocatalytic system. While different artificial redox mediating approaches spanning across interdisciplinary research fields have been developed in order to electrically wire biohybrid components during bioelectrocatalysis, a systematic understanding on physicochemical modulation of artificial redox mediators is further required. Herein, we review and discuss the use of diffusible redox mediators and redox polymer-based approaches in artificial redox-mediating systems, with a focus on photobioelectrocatalysis. The future possibilities of artificial redox mediator system designs are also discussed within the purview of present needs and existing research breadth.

20.
Nanotechnology ; 32(50)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315151

RESUMO

A stable solid electrolyte interphase (SEI) layer is key to high performing lithium ion and lithium metal batteries for metrics such as calendar and cycle life. The SEI must be mechanically robust to withstand large volumetric changes in anode materials such as lithium and silicon, so understanding the mechanical properties and behavior of the SEI is essential for the rational design of artificial SEI and anode form factors. The mechanical properties and mechanical failure of the SEI are challenging to study, because the SEI is thin at only ~10-200 nm thick and is air sensitive. Furthermore, the SEI changes as a function of electrode material, electrolyte and additives, temperature, potential, and formation protocols. A variety ofin situandex situtechniques have been used to study the mechanics of the SEI on a variety of lithium ion battery anode candidates; however, there has not been a succinct review of the findings thus far. Because of the difficulty of isolating the true SEI and its mechanical properties, there have been a limited number of studies that can fully de-convolute the SEI from the anode it forms on. A review of past research will be helpful for culminating current knowledge and helping to inspire new innovations to better quantify and understand the mechanical behavior of the SEI. This review will summarize the different experimental and theoretical techniques used to study the mechanics of SEI on common lithium battery anodes and their strengths and weaknesses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa