Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(22): 15479-15489, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249387

RESUMO

To understand the gas-surface chemistry above the thermal protection system of a hypersonic vehicle, it is necessary to map out the kinetics of key elementary reaction steps. In this work, extensive periodic density functional theory (DFT) calculations are performed to elucidate the interaction of atomic oxygen and nitrogen with both the basal plane and edge sites of highly oriented pyrolytic graphite (HOPG). Reaction energies and barriers are determined for adsorption, desorption, diffusion, recombination, and several reactions. These DFT results are compared with the most recent finite-rate model for air-carbon ablation. Our DFT results corroborated some of the parameters used in the model but suggest that further refinement may be necessary for others. The calculations reported here will help to establish a predictive kinetic model for the complex reaction network present under hypersonic flight conditions.

2.
J Phys Chem A ; 127(42): 8834-8848, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37843300

RESUMO

The dynamics of hyperthermal N(4S) + O2 collisions were investigated both experimentally and theoretically. Crossed molecular beams experiments were performed at an average center-of-mass (c.m.) collision energy of ⟨Ecoll⟩ = 77.5 kcal mol-1, with velocity- and angle-resolved product detection by a rotatable mass spectrometer detector. Nonreactive (N + O2) and reactive (NO + O) product channels were identified. In the c.m. reference frame, the nonreactively scattered N atoms and reactively scattered NO molecules were both directed into the forward direction with respect to the initial direction of the reagent N atoms. On average, more than 90% of the available energy (⟨Eavl⟩ = 77.5 kcal mol-1) was retained in translation of the nonreactive products (N + O2), whereas a much smaller fraction of the available energy for the reactive pathway (⟨Eavl⟩ = 109.5 kcal mol-1) went into translation of the NO + O products, and the distribution of translational energies for this channel was broad, indicating extensive internal excitation in the nascent NO molecules. The experimentally derived c.m. translational energy and angular distributions of the reactive products suggested at least two dynamical pathways to the formation of NO + O. Quasiclassical trajectory (QCT) calculations were performed with a collision energy of Ecoll = 77 kcal mol-1 using two sets of potential energy surfaces, denoted as PES-I and PES-II, and these theoretical results were compared to each other and to the experimental results. PES-I is a reproducing kernel Hilbert space (RKHS) representation of multireference configurational interaction (MRCI) energies, while PES-II is a many-body permutation invariant polynomial (MB-PIP) fit of complete active space second order perturbation (CASPT2) points. The theoretical investigations were both consistent with the experimental suggestion of two dynamical pathways to produce NO + O, where reactive collisions may proceed on the doublet (12A') and quartet (14A') surfaces. When analyzed with this theoretical insight, the experimental c.m. translational energy and angular distributions were in reasonably good agreement with those predicted by the QCT calculations, although minor differences were observed which are discussed. Theoretical translational energy and angular distributions for the nonreactive N + O2 products matched the experimental translational energy and angular distributions almost quantitatively. Finally, relative yields for the nonreactive and reactive scattering channels were determined from the experiment and from both theoretical methods, and all results are in reasonable agreement.

3.
J Phys Chem A ; 126(13): 2091-2102, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35324196

RESUMO

The dynamics of O(3P) + NO collisions were investigated at a collision energy of ⟨Ecoll⟩ = 84.0 kcal mol-1 with the use of a crossed molecular beams apparatus employing a rotatable mass spectrometer detector. This experiment was performed with beams of 16O atoms and isotopically labeled 15N18O molecules to enable the products of reactive and inelastic scattering to be distinguished. Three scattering pathways were observed: inelastic scattering (16O + 15N18O), O-atom exchange (18O + 15N16O), and O-atom abstraction (18O16O + 15N). All product channels exhibited a preponderance of forward scattering, but scattering over a broad angular range was also observed for all products. For inelastic scattering, an average of 90% of the collision energy is retained in the translation of 16O and 15N18O. On the other hand, for O-atom exchange (which also leads to O + NO products), the collision energy is partitioned roughly evenly between the translation of 18O + 15N16O and the internal excitation of 15N16O. The available energy for O-atom abstraction is significantly lower than the collision energy because of the endoergicity of this reaction, but the available energy is again roughly evenly partitioned between the translation of 18O16O + 15N and the internal excitation of the molecular (O2) product. The relative yields of the three scattering pathways were determined to be 0.751 for inelastic scattering, 0.220 for O-atom exchange, and 0.029 for O-atom abstraction.

4.
J Phys Chem A ; 125(38): 8434-8453, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34533308

RESUMO

Reliable modeling of hydrocarbon oxidation relies critically on knowledge of the branching fractions (BFs) as a function of temperature (T) and pressure (p) for the products of the reaction of the hydrocarbon with atomic oxygen in its ground state, O(3P). During the past decade, we have performed in-depth investigations of the reactions of O(3P) with a variety of small unsaturated hydrocarbons using the crossed molecular beam (CMB) technique with universal mass spectrometric (MS) detection and time-of-flight (TOF) analysis, combined with synergistic theoretical calculations of the relevant potential energy surfaces (PESs) and statistical computations of product BFs, including intersystem crossing (ISC). This has allowed us to determine the primary products, their BFs, and extent of ISC to ultimately provide theoretical channel-specific rate constants as a function of T and p. In this work, we have extended this approach to the oxidation of one of the most important species involved in the combustion of aromatics: the benzene (C6H6) molecule. Despite extensive experimental and theoretical studies on the kinetics and dynamics of the O(3P) + C6H6 reaction, the relative importance of the C6H5O (phenoxy) + H open-shell products and of the spin-forbidden C5H6 (cyclopentadiene) + CO and phenol adduct closed-shell products are still open issues, which have hampered the development of reliable benzene combustion models. With the CMB technique, we have investigated the reaction dynamics of O(3P) + benzene at a collision energy (Ec) of 8.2 kcal/mol, focusing on the occurrence of the phenoxy + H and spin-forbidden C5H6 + CO and phenol channels in order to shed further light on the dynamics of this complex and important reaction, including the role of ISC. Concurrently, we have also investigated the reaction dynamics of O(1D) + benzene at the same Ec. Synergistic high-level electronic structure calculations of the underlying triplet/singlet PESs, including nonadiabatic couplings, have been performed to complement and assist the interpretation of the experimental results. Statistical (RRKM)/master equation (ME) computations of the product distribution and BFs on these PESs, with inclusion of ISC, have been performed and compared to experiment. In light of the reasonable agreement between the CMB experiment, literature kinetic experimental results, and theoretical predictions for the O(3P) + benzene reaction, the so-validated computational methodology has been used to predict (i) the BF between the C6H5O + H and C5H6 + CO channels as a function of collision energy and temperature (at 0.1 and 1 bar), showing that their increase progressively favors radical (phenoxy + H)-forming over molecule (C5H6 + CO and phenol stabilization)-forming channels, and (ii) channel-specific rate constants as a function of T and p, which are expected to be useful for improved combustion models.

5.
J Chem Phys ; 154(7): 074708, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607868

RESUMO

To gain insight into the nitrogen-related gas-surface reaction dynamics on carbon-based thermal protection systems of hypersonic vehicles, we have investigated the adsorption, diffusion, and reactions of atomic nitrogen, N(4S), on the (0001) face of graphite using periodic density functional theory with a dispersion corrected functional. The atomic nitrogen is found to bind with pristine graphite at a bridge site, with a barrier of 0.88 eV for diffusing to an adjacent bridge site. Its adsorption energy at defect sites is significantly higher, while that between graphene layers is lower. The formation of N2 via Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms was also investigated. In the LH pathway, the recombinative desorption of N2 proceeds via a transition state with a relatively low barrier (0.53 eV). In addition, there is a metastable surface species, which is capable of trapping the nascent N2 at low surface temperatures as a result of the large energy disposal into the N-N vibration. The desorbed N2 is highly excited in both of its translational and vibrational degrees of freedom. The ER reaction is direct and fast, and it also leads to translationally and internally excited N2. Finally, the formation of CN from a defect site is calculated to be endoergic by 2.75 eV. These results are used to rationalize the results of recent molecular beam experiments.

6.
J Chem Phys ; 153(18): 184702, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187414

RESUMO

Atomic nitrogen is formed in the high-temperature shock layer of hypersonic vehicles and contributes to the ablation of their thermal protection systems (TPSs). To gain atomic-level understanding of the ablation of carbon-based TPS, collisions of hyperthermal atomic nitrogen on representative carbon surfaces have recently be investigated using molecular beams. In this work, we report direct dynamics simulations of atomic-nitrogen [N(4S)] collisions with pristine, defected, and oxidized graphene. Apart from non-reactive scattering of nitrogen atoms, various forms of nitridation of graphene were observed in our simulations. Furthermore, a number of gaseous molecules, including the experimentally observed CN molecule, have been found to desorb as a result of N-atom bombardment. These results provide a foundation for understanding the molecular beam experiment and for modeling the ablation of carbon-based TPSs and for future improvement of their properties.

7.
J Chem Phys ; 152(24): 244709, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32610992

RESUMO

The inelastic scattering dynamics of the isobaric molecules, naphthalene (C10H8) and 2-octanone (C8H16O), on highly oriented pyrolytic graphite (HOPG) have been investigated as part of a broader effort to inform the inlet design of a mass spectrometer for the analysis of atmospheric gases during a flyby mission through the atmosphere of a planet or moon. Molecular beam-surface scattering experiments were conducted, and the scattered products were detected with the use of a rotatable mass spectrometer detector. Continuous, supersonic beams were prepared, with average incident translational energies, ⟨Ei⟩, of 247.3 kJ mol-1 and 538.2 kJ mol-1 for naphthalene and 268.6 kJ mol-1 and 433.8 kJ mol-1 for 2-octanone. These beams were directed toward an HOPG surface, held at 530 K, at incident angles, θi, of 30°, 45°, and 70°, and scattered products were detected as functions of their translational energies and scattering angles. The scattering dynamics of both molecules are very similar and mimic the scattering of atoms and small molecules on rough surfaces, where parallel momentum is not conserved, suggesting that the dynamics are dominated by a corrugated interaction potential between the incident molecule and the surface. The effective corrugation of the molecule-surface interaction is apparently caused by the structure of the incident molecule and the consequent myriad available energy transfer pathways between the molecule and the surface during a complex collision event. In addition, the HOPG surface contributes to the corrugation of the interaction potential because it can absorb significant energy from collisions with incident molecules that have high mass and incident energy. Small differences in the scattering dynamics of the two molecules are inferred to arise from the details of the molecule-surface interaction potential, with 2-octanone exhibiting dynamics that suggest a slightly stronger interaction with the surface than naphthalene. These results add to a growing body of work on the scattering dynamics of organic molecules on HOPG, from which insight into the hypervelocity sampling and analysis of such molecules may be obtained.

8.
J Phys Chem A ; 123(1): 343-358, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30540469

RESUMO

In order to define a robust level of theory using density functionals for investigating the reactivity of ruthenium complexes, we used benchmark wave function theory, with saturated basis sets to validate generalized gradient approximation (GGA), meta-GGA, and hyper-GGA functionals in the presence and absence of empirical dispersion and range-separated corrections. We first selected potentially suitable functionals that gave accurate predictions of the relative energetics of coordination isomers. These functionals were further evaluated for the chemical accuracy of their predicted geometric and electronic structures. For the latter, both the ionic and covalent interactions were considered. The reference level of theory for comparison was coupled-cluster perturbation theory using full treatment of singles and doubles (CCSD) with a saturated triple-ζ quality basis set (TZVP) and corresponding small-core, effective core potentials for ruthenium. Several population analysis methods were evaluated to predict the ionic interactions. We found that the atomic charges obtained from fitting the electrostatic potential provided the most reasonable estimates for the ruthenium complexes. The covalent interactions were quantified by considering the atomic compositions of Ru 4d x2- y2- and 4d z2-based frontier unoccupied orbitals. Comparison of more than two dozen functionals with reference data from high-level wave function calculations revealed trends that allowed for the formulation of an optimal hybrid density functional: PBE exchange and correlation functionals with 50% HF exchange component. This level of theory was found to reproduce the experimental structure of Ru(II) complexes. These complexes were used to investigate chemical speciation in a simplified model for an ionic liquid environment.

9.
Annu Rev Phys Chem ; 67: 515-40, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27090845

RESUMO

The gas-liquid interface remains one of the least explored, but nevertheless most practically important, environments in which molecular collisions take place. These molecular-level processes underlie many bulk phenomena of fundamental and applied interest, spanning evaporation, respiration, multiphase catalysis, and atmospheric chemistry. We review here the research that has, during the past decade or so, been unraveling the molecular-level mechanisms of inelastic and reactive collisions at the gas-liquid interface. Armed with the knowledge that such collisions with the outer layers of the interfacial region can be unambiguously distinguished, we show that the scattering of gas-phase projectiles is a promising new tool for the interrogation of liquid surfaces with extreme surface sensitivity. Especially for reactive scattering, this method also offers absolute chemical selectivity for the groups that react to produce a specific observed product.

10.
Langmuir ; 32(39): 9938-9949, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27603521

RESUMO

Two complementary approaches were used to study the liquid-vacuum interface of the liquid-crystalline ionic liquid 1-dodecyl-3-methylimidazolium tetrafluoroborate ([C12mim][BF4]) in the smectic A (SmA) and isotropic phases. O atoms with two distinct incident translational energies were scattered from the surface of [C12mim][BF4]. Angle-dependent time-of-flight distributions and OH yields, respectively, were recorded from high- and low-energy O atoms. There were no significant changes in the measurements using either approach, nor the properties derived from them, accompanying the transition from the SmA to the isotropic phase. This indicates that the surface structure of [C12mim][BF4] remains essentially unchanged across the phase boundary, implying that the bulk order and surface structure are not strongly correlated for this material. This effect is ascribed to the strong propensity for the outer surfaces of ionic liquids to be dominated by alkyl chains, over an underlying layer rich in anions and cation head groups, whether or not the bulk material is a liquid crystal. In a comparative study, the OH yield from the surface of the liquid crystal, 8CB, was found to be affected by the bulk order, showing a surprising step increase at the SmA-nematic transition temperature, whose origin is the subject of speculation.

11.
J Am Chem Soc ; 136(35): 12371-84, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25084139

RESUMO

The first quantum-state-resolved distributions over the full range of available product levels are reported for any isotopic variant of the elementary reaction of O((3)P) with molecular hydrogen. A laser-detonation source was used to produce a hyperthermal oxygen-atom beam, which allowed for sufficient collision energy to surmount the reaction barrier. This beam was crossed by a supersonic beam of D2. The nascent OD products were detected by laser-induced fluorescence. OD rotational distributions in vibrational states v' = 0, 1, and 2 at a collision energy of 25 kcal mol(-1) are reported, together with distributions for the dominant product vibrational level, v'= 0, at lower collision energies of 20 and 15 kcal mol(-1). The OD product is highly rotationally excited, to a degree that declines as expected for the higher vibrational levels or for reductions in the collision energy. The measured rovibrational distributions at the highest collision energy are in excellent agreement with previous theoretical predictions based on quantum scattering calculations on the triplet potential energy surfaces developed by Rogers et al. (J. Phys. Chem. A 2000, 104, 2308-2325). However, no significant OD spin-orbit preference was observed, in contrast to the predictions of most existing theoretical models of the non-adiabatic dynamics based on the widely used reduced-dimensional four-state model of Hoffmann and Schatz (J. Chem. Phys. 2000, 113, 9456-9465). Furthermore, a clear observed preference for OD Π(A') Λ-doublet levels is not consistent with a simple extrapolation of the calculated relative reaction cross sections on intermediate surfaces of (3)A' and (3)A″ symmetry.

12.
J Am Chem Soc ; 136(8): 3065-74, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24345306

RESUMO

The reactive uptake and ionization of sodium atoms in glycerol were investigated by gas-liquid scattering experiments and ab initio molecular dynamics (AIMD) simulations. A nearly effusive beam of Na atoms at 670 K was directed at liquid glycerol in vacuum, and the scattered Na atoms were detected by a rotatable mass spectrometer. The Na velocity and angular distributions imply that all impinging Na atoms that thermally equilibrate on the surface remain behind, likely ionizing to e(-) and Na(+). The reactive uptake of Na atoms into glycerol was determined to be greater than 75%. Complementary AIMD simulations of Na striking a 17-molecule glycerol cluster indicate that the glycerol hydroxyl groups reorient around the Na atom as it makes contact with the cluster and begins to ionize. Although complete ionization did not occur during the 10 ps simulation, distinct correlations among the extent of ionization, separation between Na(+) and e(-), solvent coordination, and binding energies of the Na atom and electron were observed. The combination of experiments and simulations indicates that Na-atom deposition provides a low-energy pathway for generating solvated electrons in the near-interfacial region of protic liquids.

13.
J Am Chem Soc ; 135(50): 19039-45, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24299197

RESUMO

Photocatalytic dissociation of methanol (CH3OH) on a TiO2(110) surface has been studied by temperature programmed desorption (TPD) at 355 and 266 nm. Primary dissociation products, CH2O and H atoms, have been detected. The dependence of the reactant and product TPD signals on irradiation time has been measured, allowing the photocatalytic reaction rate of CH3OH at both wavelengths to be directly determined. The initial dissociation rate of CH3OH at 266 nm is nearly 2 orders of magnitude faster than that at 355 nm, suggesting that CH3OH photocatalysis is strongly dependent on photon energy. This experimental result raises doubt about the widely accepted photocatalysis model on TiO2, which assumes that the excess potential energy of charge carriers is lost to the lattice via strong coupling with phonon modes by very fast thermalization and the reaction of the adsorbate is thus only dependent on the number of electron-hole pairs created by photoexcitation.

14.
Acc Chem Res ; 45(11): 1973-81, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22694904

RESUMO

Carbon materials have mechanical, electrical, optical, and tribological properties that make them attractive for use in a wide range of applications. Two properties that make them attractive, their hardness and inertness in many chemical environments, also make them difficult to process into useful forms. The use of atomic oxygen and other forms of oxidation has become a popular option for processing of these materials (etching, erosion, chemical functionalization, etc.). This Account provides an overview of the use of theory to describe the mechanisms of oxidation of diamond and graphite using hyperthermal (few electronvolts) oxygen atoms. The theoretical studies involve the use of Born-Oppenheimer molecular dynamics calculations in which on-the-fly electronic structure calculations have been performed using either density functional theory or density-functional-tight-binding semiempirical methods to simulate collisions of atomic oxygen with diamond or graphite. Comparisons with molecular-beam scattering on surfaces provide indirect verification of the results. Graphite surfaces become oxidized when exposed to hyperthermal atomic oxygen, and the calculations have revealed the mechanisms for formation of both CO and CO(2). These species arise when epoxide groups form and diffuse to holes on the surface where carbonyls are already present. CO and CO(2) form when these carbonyl groups dissociate from the surface, resulting in larger holes. We also discuss mechanisms for forming holes in graphite surfaces that were previously hole-free. For diamond, the (111) and (100) surfaces are oxidized by the oxygen atoms, forming mostly oxy radicals and ketones on the respective surfaces. The oxy-covered (111) surface can then react with hyperthermal oxygen to give gaseous CO(2), or it can become graphitized leading to carbon removal as with graphite. The (100) surface is largely unreactive to hyperthermal atomic oxygen, undergoing large amounts of inelastic scattering and supporting reactions that create O(2) or peroxy radicals. We did not observe a mechanism for the removal of carbon for this surface. These results are consistent with experimental studies that show formation of CO and CO(2) in graphite oxidation and preferential etching on (111) CVD diamond surfaces in comparison with (100) surfaces.

15.
J Am Chem Soc ; 134(32): 13366-73, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22794088

RESUMO

We have investigated the photocatalysis of partially deuterated methanol (CD(3)OH) and H(2)O on TiO(2)(110) at 400 nm using a newly developed photocatalysis apparatus in combination with theoretical calculations. Photocatalyzed products, CD(2)O on Ti(5c) sites, and H and D atoms on bridge-bonded oxygen (BBO) sites from CD(3)OH have been clearly detected, while no evidence of H(2)O photocatalysis was found. The experimental results show that dissociation of CD(3)OH on TiO(2)(110) occurs in a stepwise manner in which the O-H dissociation proceeds first and is then followed by C-D dissociation. Theoretical calculations indicate that the high reverse barrier to C-D recombination and the facile desorption of CD(2)O make photocatalytic methanol dissociation on TiO(2)(110) proceed efficiently. Theoretical results also reveal that the reverse reactions, i.e, O-H recombination after H(2)O photocatalytic dissociation on TiO(2)(110), may occur easily, thus inhibiting efficient photocatalytic water splitting.

16.
J Phys Chem A ; 116(1): 64-84, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22185296

RESUMO

The dynamics of O((3)P) + CO(2) collisions at hyperthermal energies were investigated experimentally and theoretically. Crossed-molecular-beams experiments at = 98.8 kcal mol(-1) were performed with isotopically labeled (12)C(18)O(2) to distinguish products of nonreactive scattering from those of reactive scattering. The following product channels were observed: elastic and inelastic scattering ((16)O((3)P) + (12)C(18)O(2)), isotope exchange ((18)O + (16)O(12)C(18)O), and oxygen-atom abstraction ((18)O(16)O + (12)C(18)O). Stationary points on the two lowest triplet potential energy surfaces of the O((3)P) + CO(2) system were characterized at the CCSD(T)/aug-cc-pVTZ level of theory and by means of W4 theory, which represents an approximation to the relativistic basis set limit, full-configuration-interaction (FCI) energy. The calculations predict a planar CO(3)(C(2v), (3)A'') intermediate that lies 16.3 kcal mol(-1) (W4 FCI excluding zero point energy) above reactants and is approached by a C(2v) transition state with energy 24.08 kcal mol(-1). Quasi-classical trajectory (QCT) calculations with collision energies in the range 23-150 kcal mol(-1) were performed at the B3LYP/6-311G(d) and BMK/6-311G(d) levels. Both reactive channels observed in the experiment were predicted by these calculations. In the isotope exchange reaction, the experimental center-of-mass (c.m.) angular distribution, T(θ(c.m.)), of the (16)O(12)C(18)O products peaked along the initial CO(2) direction (backward relative to the direction of the reagent O atoms), with a smaller isotropic component. The product translational energy distribution, P(E(T)), had a relatively low average of = 35 kcal mol(-1), indicating that the (16)O(12)C(18)O products were formed with substantial internal energy. The QCT calculations give c.m. P(E(T)) and T(θ(c.m.)) distributions and a relative product yield that agree qualitatively with the experimental results, and the trajectories indicate that exchange occurs through a short-lived CO(3)* intermediate. A low yield for the abstraction reaction was seen in both the experiment and the theory. Experimentally, a fast and weak (16)O(18)O product signal from an abstraction reaction was observed, which could only be detected in the forward direction. A small number of QCT trajectories leading to abstraction were observed to occur primarily via a transient CO(3) intermediate, albeit only at high collision energies (149 kcal mol(-1)). The oxygen isotope exchange mechanism for CO(2) in collisions with ground state O atoms is a newly discovered pathway through which oxygen isotopes may be cycled in the upper atmosphere, where O((3)P) atoms with hyperthermal translational energies can be generated by photodissociation of O(3) and O(2).

17.
J Phys Chem B ; 126(9): 1962-1979, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35225614

RESUMO

The gas-liquid interface of ionic liquids (ILs) is critically important in many applications, for example, in supported IL phase (SILP) catalysis. Methods to investigate the interfacial structure in these systems will allow their performance to be improved in a rational way. In this study, reactive-atom scattering (RAS), surface tension measurements, and molecular dynamics (MD) simulations were used to study the vacuum interface of mixtures of partially fluorinated and normal alkyl ILs. The underlying aim was to understand whether fluorinated IL ions could be used as additives to modify the surface structure of one of the most widely used families of alkyl ILs. The series of ILs 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][Tf2N]) with n = 4-12 were mixed with a fixed-length, semiperfluorinated analogue (1H,1H,2H,2H-perfluorooctyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C8mimF13][Tf2N]), forming [Cnmim](1-x)[C8mimF13]x[Tf2N] mixtures, where x is the bulk mole fraction of the fluorinated component. The RAS-LIF method combined O-atom projectiles with laser-induced fluorescence (LIF) detection of the product OH as a measure of surface exposure of the alkyl chains. For [C8mim](1-x)[C8mimF13]x[Tf2N] mixtures, RAS-LIF OH yields are below those expected from stoichiometry. There are quantitatively consistent negative deviations from linearity of the surface tension. Both results imply that the lower-surface-tension fluoroalkyl material dominates the surface. A similar deficit is found for alkyl chain lengths n = 4, 6, 8, and 12 and for all (nonzero) x investigated by RAS-LIF. Accessible-surface-area (ASA) analyses of the MD simulations for [Cnmim](1-x)[C8mimF13]x[Tf2N] mixtures qualitatively reproduce the same primary effect of fluoro-chain predominance of the surface over most of the range of n. However, there are significant quantitative discrepancies between MD ASA predictions and experiment relating to the strength of any n-dependence of the relative alkyl coverage at fixed x, and on the x-dependence at fixed n. These discrepancies are discussed in the context of detailed examinations of the surface structures predicted in the MD simulations. Potential explanations, beyond experimental artifacts, include inadequacies in the classical force fields used in the MD simulations or the inability of simple ASA algorithms to capture dynamical factors that influence RAS-LIF yields.

18.
Langmuir ; 27(11): 6814-21, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21526811

RESUMO

Molecular beam surface scattering and X-ray absorption spectroscopic experiments were employed to study the reaction of deuterium atoms with a pyrite, FeS(2) (100), surface and to investigate the electronic and geometric structures of the resulting Fe-S phases. Incident D atoms, produced by a radiofrequency plasma and expanded in an effusive beam, were directed at a pyrite surface held at various temperatures from ambient up to 200 °C. During exposure to the D-atom beam, D(2)S products were released with a thermal distribution of molecular speeds, indicating that the D atoms likely reacted in thermal equilibrium with the surface. The yield of D(2)S from the surface decreased approximately exponentially with exposure duration, suggesting that the surface accessible sulfur atoms were depleted, thus leaving an iron-rich surface. This conclusion is consistent with X-ray absorption measurements of the exposed surfaces, which indicated the formation of a layered structure, with elemental iron as the outermost layer on top of a formally Fe((I))-S phase as an intermediate layer and a formally Fe((II))-S(2) bulk pyrite layer at lower depths. The reduced Fe((I))-S phase is particularly remarkable because of its similarity to the catalytically active sites of small molecule metalloenzymes, such as FeFe-hydrogenases and MoFe-nitrogenases.


Assuntos
Materiais Biomiméticos/química , Hidrogênio/química , Ferro/química , Sulfetos/química , Enxofre/química , Absorção , Microscopia de Força Atômica , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
19.
J Phys Chem A ; 120(27): 5348-59, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27043455
20.
J Phys Chem A ; 115(40): 10894-902, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21919539

RESUMO

The H-atom abstraction reaction, O((3)P) + CH(4) → OH + CH(3), has been studied at a hyperthermal collision energy of 64 kcal mol(-1) by two crossed-molecular-beams techniques. The OH products were detected with a rotatable mass spectrometer employing electron-impact ionization, and the CH(3) products were detected with the combination of resonance-enhanced multiphoton ionization (REMPI) and time-sliced ion velocity-map imaging. The OH products are mainly formed through a stripping mechanism, in which the reagent O atom approaches the CH(4) molecule at large impact parameters and the OH product is scattered in the forward direction: roughly the same direction as the reagent O atoms. Most of the available energy is partitioned into product translation. The dominance of the stripping mechanism is a unique feature of such H-atom abstraction reactions at hyperthermal collision energies. In the hyperthermal reaction of O((3)P) with CH(4), the H-atom abstraction reaction pathway accounts for 70% of the reactive collisions, while the H-atom elimination pathway to produce OCH(3) + H accounts for the other 30%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa