Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Molecules ; 29(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39064977

RESUMO

Betulinic acid is a lupane-type pentacyclic triterpene mostly found in birch bark and thoroughly explored for its wide range of pharmacological activities. Despite its impressive biological potential, its low bioavailability has challenged many researchers to develop different formulations for achieving better in vitro and in vivo effects. We previously reported the synthesis of fatty acid esters of betulinic acid using butyric, stearic, and palmitic acids (But-BA, St-BA, and Pal-BA) and included them in surfaced-modified liposomes (But-BA-Lip, St-BA-Lip, Pal-BA-Lip). In the current study, we evaluated the cytotoxic effects of both fatty acid esters and their respective liposomal formulations against MCF-7, HT-29, and NCI-H460 cell line. The cytotoxic assessment of BA derivatives revealed that both the fatty esters and their liposomal formulations acted as cytotoxic agents in a dose- and time-dependent manner. But-BA-Lip exerted stronger cytotoxic effects than the parent compound, BA and its liposomal formulation, and even stronger effects than 5-FU against HT-29 cells (IC50 of 30.57 µM) and NCI-H460 cells (IC50 of 30.74 µM). BA's fatty esters and their respective liposomal formulations facilitated apoptosis in cancer cells by inducing nuclear morphological changes and increasing caspase-3/-7 activity. The HET-CAM assay proved that none of the tested compounds induced any irritative effect, suggesting that they can be used safely for local applications.


Assuntos
Ácido Betulínico , Neoplasias da Mama , Ésteres , Lipossomos , Triterpenos Pentacíclicos , Triterpenos , Humanos , Lipossomos/química , Triterpenos Pentacíclicos/farmacologia , Ésteres/química , Ésteres/farmacologia , Triterpenos/farmacologia , Triterpenos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Células HT29 , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Apoptose/efeitos dos fármacos , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos/química , Feminino , Proliferação de Células/efeitos dos fármacos
2.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958717

RESUMO

The current study focuses on the synthesis via combustion of dysprosium-doped cobalt ferrites that were subsequently physicochemically analyzed in terms of morphological and magnetic properties. Three types of doped nanoparticles were prepared containing different Dy substitutions and coated with HPGCD for higher dispersion properties and biocompatibility, and were later submitted to biological tests in order to reveal their potential anticancer utility. Experimental data obtained through FTIR, XRD, SEM and TEM confirmed the inclusion of Dy3+ ions in the nanoparticles' structure. The size of the newly formed nanoparticles ranged between 20 and 50 nm revealing an inverse proportional relationship with the Dy content. Magnetic studies conducted by VSM indicated a decrease in remanent and saturation mass magnetization, respectively, in Dy-doped nanoparticles in a direct proportionality with the Dy content; the decrease was further amplified by cyclodextrin complexation. Biological assessment in the presence/absence of red light revealed a significant cytotoxic activity in melanoma (A375) and breast (MCF-7) cancer cells, while healthy keratinocytes (HaCaT) remained generally unaffected, thus revealing adequate selectivity. The investigation of the underlying cytotoxic molecular mechanism revealed an apoptotic process as indicated by nuclear fragmentation and shrinkage, as well as by Western blot analysis of caspase 9, p53 and cyclin D1 proteins. The anticancer activity for all doped Co ferrites varied was in a direct correlation to their Dy content but without being affected by the red light irradiation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Melanoma , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Nanopartículas/química , Luz , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Melanoma/tratamento farmacológico
3.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615613

RESUMO

One of several promising strategies for increasing the bioavailability and therapeutic potential of high-lipophilic biologically active compounds is gold nanoparticle formulation. The current study describes the synthesis and biological antimelanoma evaluation of three triterpen-functionalized gold nanoparticles, obtained using our previously reported antimelanoma benzotriazole-triterpenic acid esters. Functionalized gold nanoparticle (GNP) formation was validated through UV-VIS and FTIR spectroscopy. The conjugate's cytotoxic effects were investigated using HaCaT healthy keratinocytes and A375 human melanoma cells. On A375 cells, all three conjugates demonstrated dose-dependent cytotoxic activity, but no significant cytotoxic effects were observed on normal HaCaT keratinocytes. GNP-conjugates were found to be more cytotoxic than their parent compounds. After treatment with all three GNP-conjugates, 4,6'-diamidino-2-phenylindole (DAPI) staining revealed morphological changes consistent with apoptosis in A375 melanoma cells. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed that the triterpene-GNP conjugate treated A375 melanoma cells had a fold change increase in Bcl-2-associated X protein (BAX) expression and a fold change decrease in B-cell lymphoma 2 (Bcl-2) expression. In A735 melanoma cells, high-resolution respirometry studies revealed that all three GNP-conjugates act as selective inhibitors of mitochondrial function. Furthermore, by examining the effect on each mitochondrial respiratory rate, the results indicate that all three conjugates are capable of increasing the production of reactive oxygen species (ROS), an apoptosis trigger in cancer cells.


Assuntos
Antineoplásicos , Melanoma , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Apoptose , Melanoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
4.
Bioorg Chem ; 119: 105535, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906859

RESUMO

The use of natural compounds as starting point for semisynthetic derivatives has already been proven as a valuable source of active anticancer agents. Hollongdione (4,4,8,14-tetramethyl-18-norpregnan-3,20-dion), obtained by few steps from dammarane type triterpenoid dipterocarpol, was chemically modified at C2 and C21 carbon atoms by the Claisen-Schmidt aldol condensation to give a series of arylidene derivatives. The anticancer activity of the obtained compounds was assessed on NCI-60 cancer cell panel, revealing strong antiproliferative effects against a large variety of cancer cells. 2,21-Bis-[3-pyridinyl]-methylidenohollongdione 9 emerged as the most active derivative as indicated by its GI50 values in the micromolar range which, combined with its high selectivity index values, indicated its suitability for deeper biological investigation. The mechanisms involved in compound 9 antiproliferative activity, were investigated through in vitro (DAPI staining) and ex vivo (CAM assay) tests, which exhibited its apoptotic and antiangiogenic activities. In addition, compound 9 showed an overall inhibition of mitochondrial respiration. rtPCR analysis identified the more intimate activity at pro-survival/pro-apoptotic gene level. Collectively, the hollongdione derivative stand as a promising therapeutic option against melanoma and breast cancer provided that future in vivo analysis will certify its clinical efficacy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Melanoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Triterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma/metabolismo , Melanoma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
5.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054925

RESUMO

Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes' therapeutic effects and the development of new topical formulations.


Assuntos
Ciclodextrinas/química , Desenho de Fármacos , Desenvolvimento de Medicamentos , Triterpenos/química , Triterpenos/farmacologia , Fenômenos Químicos , Ciclodextrinas/classificação , Composição de Medicamentos , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Triterpenos/isolamento & purificação
6.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163063

RESUMO

The last decade has witnessed a sustained increase in the research development of modern-day chemo-therapeutics, especially for those used for high mortality rate pathologies. However, the therapeutic landscape is continuously changing as a result of the currently existing toxic side effects induced by a substantial range of drug classes. One growing research direction driven to mitigate such inconveniences has converged towards the study of natural molecules for their promising therapeutic potential. Triterpenes are one such class of compounds, intensively investigated for their therapeutic versatility. Although the pharmacological effects reported for several representatives of this class has come as a well-deserved encouragement, the pharmacokinetic profile of these molecules has turned out to be an unwelcomed disappointment. Nevertheless, the light at the end of the tunnel arrived with the development of nanotechnology, more specifically, the use of liposomes as drug delivery systems. Liposomes are easily synthesizable phospholipid-based vesicles, with highly tunable surfaces, that have the ability to transport both hydrophilic and lipophilic structures ensuring superior drug bioavailability at the action site as well as an increased selectivity. This study aims to report the results related to the development of different types of liposomes, used as targeted vectors for the delivery of various triterpenes of high pharmacological interest.


Assuntos
Lipossomos/química , Triterpenos/administração & dosagem , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas , Triterpenos/química
7.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012159

RESUMO

Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.


Assuntos
Triterpenos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico
8.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887090

RESUMO

Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.


Assuntos
Ácido Oleanólico , Triterpenos , Anti-Inflamatórios , Ácido Oleanólico/farmacologia , Fosfatidilinositol 3-Quinases , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico
9.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077389

RESUMO

Pentacyclic triterpenes, such as betulinic, ursolic, and oleanolic acids are efficient and selective anticancer agents whose underlying mechanisms of action have been widely investigated. The introduction of N-bearing heterocycles (e.g., triazoles) into the structures of natural compounds (particularly pentacyclic triterpenes) has yielded semisynthetic derivatives with increased antiproliferative potential as opposed to unmodified starting compounds. In this work, we report the synthesis and biological assessment of benzotriazole esters of betulinic acid (BA), oleanolic acid (OA), and ursolic acid (UA) (compounds 1-3). The esters were obtained in moderate yields (28-42%). All three compounds showed dose-dependent reductions in cell viability against A375 melanoma cells and no cytotoxic effects against healthy human keratinocytes. The morphology analysis of treated cells showed characteristic apoptotic changes consisting of nuclear shrinkage, condensation, fragmentation, and cellular membrane disruption. rtPCR analysis reinforced the proapoptotic evidence, showing a reduction in anti-apoptotic Bcl-2 expression and upregulation of the pro-apoptotic Bax. High-resolution respirometry studies showed that all three compounds were able to significantly inhibit mitochondrial function. Molecular docking showed that compounds 1-3 showed an increase in binding affinity against Bcl-2 as opposed to BA, OA, and UA and similar binding patterns compared to known Bcl-2 inhibitors.


Assuntos
Ácido Oleanólico , Triterpenos , Apoptose , Linhagem Celular Tumoral , Ésteres/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Triterpenos Pentacíclicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2 , Triazóis/farmacologia , Triterpenos/química , Triterpenos/farmacologia
10.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431906

RESUMO

Cancer, in all its types and manifestations, remains one of the most frequent causes of death worldwide; an important number of anticancer drugs have been developed from plants, fungi and animals, starting with natural compounds that were later derivatized in order to achieve an optimized pharmacokinetic/pharmacological profile. Betulinic acid is a pentacyclic triterpenic compound that was identified as an anticancer agent whose main advantage consists in its selective activity, which ensures the almost total lack of cytotoxic side effects. Conjugates of betulinic acid with substituted triazoles, scaffolds with significant pharmacological properties, were synthesized and tested as anticancer agents in order to achieve new therapeutic alternatives. The current paper aims to obtain a C30-1,2,4-triazole derivative of betulinic acid simultaneously acetylated at C3 whose biological activity was tested against RPMI melanoma cells. The compound revealed significant cytotoxic effects at the tested concentrations (2, 10 and 50 µΜ) by significantly decreasing the cell viability to 88.3%, 54.7% and 24.5%, respectively, as compared to the control. The compound's testing in normal HaCaT cells showed a lack of toxicity, which indicates its selective dose-dependent anticancer activity. The investigation of its underlying molecular mechanism revealed an apoptotic effect induced at the mitochondrial level, which was validated through high-resolution respirometry studies.


Assuntos
Antineoplásicos , Triterpenos , Animais , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triazóis/farmacologia , Antineoplásicos/farmacologia , Ácido Betulínico
11.
Molecules ; 27(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235089

RESUMO

Medicinal plants have been used by humans since ancient times for the treatment of various diseases and currently represent the main source of a variety of phytocompounds, such as triterpenes. Pentacyclic triterpenes have been subjected to numerous studies that have revealed various biological activities, such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and hepatoprotective effects, which can be employed in therapy. However, due to their high lipophilicity, which is considered to exert a significant influence on their bioavailability, their current use is limited. A frequent approach employed to overcome this obstacle is the chemical derivatization of the core structure with different types of moieties including heterocycles, which are considered key elements in medicinal chemistry. The present review aims to summarize the literature published in the last 10 years regarding the derivatives of pentacyclic triterpenes bearing heterocyclic moieties and focuses on the biologically active derivatives as well as their structure-activity relationships. Predominantly, the targeted positions for the derivatization of the triterpene skeleton are C-3 (hydroxyl/oxo group), C-28 (hydroxyl/carboxyl group), and C-30 (allylic group) or the extension of the main scaffold by fusing various heterocycles with the A-ring of the phytocompound. In addition, numerous derivatives also contain linker moieties that connect the triterpenic scaffold with heterocycles; one such linker, the triazole moiety, stands out as a key pharmacophore for its biological effect. All these studies support the hypothesis that triterpenoid conjugates with heterocyclic moieties may represent promising candidates for future clinical trials.


Assuntos
Ácido Oleanólico , Plantas Medicinais , Triterpenos , Humanos , Hipoglicemiantes , Triterpenos Pentacíclicos/farmacologia , Triazóis , Triterpenos/química
12.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364186

RESUMO

Betulinic acid (BA) has been extensively studied in recent years mainly for its antiproliferative and antitumor effect in various types of cancers. Limited data are available regarding the pharmacokinetic profile of BA, particularly its metabolic transformation in vivo. In this study, we present the screening and structural investigations by ESI Orbitrap MS in the negative ion mode and CID MS/MS of phase I and phase II metabolites detected in mouse plasma after the intraperitoneal administration of a nanoemulsion containing BA in SKH 1 female mice. Obtained results indicate that the main phase I metabolic reactions that BA undergoes are monohydroxylation, dihydroxylation, oxidation and hydrogenation, while phase II reactions involved sulfation, glucuronidation and methylation. The fragmentation pathway for BA and its plasma metabolites were elucidated by sequencing of the precursor ions by CID MS MS experiments.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Feminino , Camundongos , Animais , Espectrometria de Massas em Tandem/métodos , Triterpenos Pentacíclicos , Íons , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ácido Betulínico
13.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639035

RESUMO

Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18-1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4',6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Triterpenos/farmacologia , Inibidores da Angiogênese , Antineoplásicos/química , Sítios de Ligação , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Triterpenos/química
14.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681629

RESUMO

A series of novel hybrid chalcone N-ethyl-piperazinyl amide derivatives of oleanonic and ursonic acids were synthesized, and their cytotoxic potential was evaluated in vitro against the NCI-60 cancer cell line panel. Compounds 4 and 6 exhibited the highest overall anticancer activity, with GI50 values in some cases reaching nanomolar values. Thus, the two compounds were further assessed in detail in order to identify a possible apoptosis- and antiangiogenic-based mechanism of action induced by the assessed compounds. DAPI staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that up-regulation of pro-apoptotic Bak gene combined with the down-regulation of the pro-survival Bcl-XL and Bcl-2 genes caused altered ratios between the pro-apoptotic and anti-apoptotic proteins' levels, leading to overall induced apoptosis. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, suggesting that compounds may induce apoptotic cell death through targeted anti-apoptotic protein inhibition, as well. Ex vivo determinations showed that both compounds did not significantly alter the angiogenesis process on the tested cell lines.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Piperazina/química , Triterpenos/química , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Triterpenos/metabolismo , Triterpenos/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
15.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830423

RESUMO

Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against Mycobacterium tuberculosis, mono-resistant MTB strains, and nontuberculous strains Mycobacterium abscessus and Mycobacterium avium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound 7), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains. Molecular docking corroborated with a machine learning drug-drug similarity algorithm revealed that azepano-triterpenoids have a rifampicin-like antitubercular activity, with compound 7 scoring the highest as a potential M. tuberculosis RNAP potential inhibitor. FIC testing demonstrated an additive effect of compound 7 when combined with rifampin, isoniazid and ethambutol. Most compounds were highly active against M. avium with compound 14 recording the same MIC value as the control rifampicin (0.0625 µM). The antitubercular ex vivo effectiveness of the tested compounds on THP-1 infected macrophages is correlated with their increased cell permeability. The tested triterpenoids also exhibit low cytotoxicity and do not induce antibacterial resistance in MTB strains.


Assuntos
Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Triterpenos/química , Tuberculose/tratamento farmacológico , Antibacterianos/química , Antibacterianos/farmacologia , Antituberculosos/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/genética , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium tuberculosis/patogenicidade , Rifampina/farmacologia , Triterpenos/farmacologia , Tuberculose/genética , Tuberculose/microbiologia
16.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669817

RESUMO

Despite the recent advances in the field of chemically synthetized pharmaceutical agents, nature remains the main supplier of bioactive molecules. The research of natural products is a valuable approach for the discovery and development of novel biologically active compounds possessing unique structures and mechanisms of action. Although their use belongs to the traditional treatment regimes, plant-derived compounds still cover a large portion of the current-day pharmaceutical agents. Their medical importance is well recognized in the field of oncology, especially as an alternative to the limitations of conventional chemotherapy (severe side effects and inefficacy due to the occurrence of multi-drug resistance). This review offers a comprehensive perspective of the first blockbuster chemotherapeutic agents of natural origin's (e.g. taxol, vincristine, doxorubicin) mechanism of action using 3D representation. In addition is portrayed the step-by-step evolution from preclinical to clinical evaluation of the most recently studied natural compounds with potent antitumor activity (e.g. resveratrol, curcumin, betulinic acid, etc.) in terms of anticancer mechanisms of action and the possible indications as chemotherapeutic or chemopreventive agents and sensitizers. Finally, this review describes several efficient platforms for the encapsulation and targeted delivery of natural compounds in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Terapias Complementares , Descoberta de Drogas , Plantas/química , Animais , Antineoplásicos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Quimioprevenção , Humanos , Modelos Moleculares
17.
Bioorg Chem ; 104: 104209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911190

RESUMO

The antimycobacterial investigation of azepanobetulin and its amide derivative was performed. Both compounds showed increased in vitro antibacterial activity on the H37Rv MTB strain in aerobic and anaerobic conditions. Basing on differences between MIC and IC50 values a predominant bactericidal effect for amide in contrast to azepanobetulin with a bacteriostatic antibacterial mechanism is defined. Both compounds showed a strong antibacterial effect against resistant MTB strains with amide derivative being slightly more active. Amide derivative also showed a higher antibacterial potency against non-tuberculous mycobacterial strains (M. avium, M. abscessus). Molecular docking studies showed that the inhibition of tuberculosinyl adenosine transferase (Rv3378c) could constitute an antimycobacterial mechanism of action for these triterpenic azepane derivatives. The pharmacokinetic profile was evaluated by ADMET studies and azepanobetulin showing the better results was evaluated by in vivo experiments. This compound has demonstrated a statistically significant antimycobacterial activity compared to control, but inferior to isoniazid. Our findings show that pentacyclic triterpene derivatives holding a seven-membered azepane A-ring are the promising template for the development of new agents with high antibacterial potential against M. tuberculosis H37Rv, non-tuberculous mycobacterial and drug- resistant strains.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Antibacterianos/síntese química , Antibacterianos/química , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Células THP-1
18.
Molecules ; 25(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256207

RESUMO

Wounds are among the most common skin conditions, displaying a large etiological diversity and being characterized by different degrees of severity. Wound healing is a complex process that involves multiple steps such as inflammation, proliferation and maturation and ends with scar formation. Since ancient times, a widely used option for treating skin wounds are plant- based treatments which currently have become the subject of modern pharmaceutical formulations. Triterpenes with tetracyclic and pentacyclic structure are extensively studied for their implication in wound healing as well as to determine their molecular mechanisms of action. The current review aims to summarize the main results of in vitro, in vivo and clinical studies conducted on lupane, ursane, oleanane, dammarane, lanostane and cycloartane type triterpenes as potential wound healing treatments.


Assuntos
Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Conformação Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pele/anatomia & histologia , Dermatopatias/tratamento farmacológico , Dermatopatias/etiologia , Dermatopatias/patologia , Fenômenos Fisiológicos da Pele , Relação Estrutura-Atividade , Resultado do Tratamento
19.
Molecules ; 20(12): 22691-702, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26694347

RESUMO

Betulonic acid belongs to the pentacyclic triterpenic derivative class and can be obtained through the selective oxidation of betulin. In this study we set obtaining several functionalized derivatives of this compound by its condensation with several amino compounds such as aminoguanidine, hydroxylamine, n-butylamine and thiosemicarbazide as our goal. The functionalization of the parent compound led to several molecules with antiproliferative potential, the most promising being 3-2-carbamothioylhydrazonolup-20(29)-en-28-oic acid.


Assuntos
Antineoplásicos/química , Ácido Oleanólico/análogos & derivados , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Células MCF-7 , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197406

RESUMO

This study aimed to investigate the chemical composition and antibacterial properties of the essential oil (EO) derived from the aerial parts of Satureja candidissima (Munby) Briq (SC), as well as the mechanisms of interaction between SCEO chemical components and target proteins related to antibacterial activity mechanisms using a molecular docking approach, and for more accuracy molecular dynamic simulation and DFT calculations were carried out. The GC-MS technique was used to analyze the chemical composition of SCEO. The results showed that SCEO contained various chemical compounds, with pulegone being identified as the major component (53.26%). The results also indicated the presence of (+)-menthone (11.02%), borneol (4.43%), 2-cyclohexen-1-one, 3-methyl-6-(1-methylethylidene) (2.50%), and 3-octanol (2.09%). The study revealed that the SCEO displayed antibacterial activity against all tested gram-positive bacteria. To further understand the mechanism behind its antibacterial activity, in silico molecular docking studies were performed. The results indicated that the antibacterial effect of SCEO compounds could be due to the combination with enoyl-[acyl-carrier-protein] reductase [NADPH] FabI (PDB ID: 4ALL) in a variety of ways. The molecular dynamics simulation analysis yielded favorable outcomes for the docked complex involving 1H-cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene, and 1,4,7-tetramethyldecahydro-1H-cyclopropa[e]azulen-4-ol with enoyl-[acyl-carrier-protein] reductase [NADPH]. Geometry optimization, coupled with Density Functional Theory (DFT), can be employed to assess the importance of quantum chemical descriptors in elucidating potential antibacterial activity. Quantum descriptors were computed based on EHOMO and ELUMO. The results of this study provide important insights into the potential use of Satureja candidissima (Munby) Briq EO as antibacterial agent.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa