Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762013

RESUMO

Plant cell cultures have emerged as a promising tool for producing active molecules due to their numerous advantages over traditional agricultural methods. Flavonols, and anthocyanin pigments in particular, together with other phenolic compounds such as chlorogenic acid, are known for their beneficial health properties, mainly due to their antioxidant, antimicrobial, and anti-inflammatory activities. The synthesis of these molecules is finely regulated in plant cells and controlled at the transcriptional level by specific MYB and bHLH transcription factors that coordinate the transcription of structural biosynthetic genes. The co-expression of peach PpMYB10.1 and PpbHLH3 in tobacco was used to develop tobacco cell lines showing high expression of both the peach transgenes and the native flavonol structural genes. These cell lines were further selected for fast growth. High production levels of chlorogenic acid, anthocyanins (mainly cyanidin 3-rutinoside), and other phenolics were also achieved in pre-industrial scale-up trials. A single-column-based purification protocol was developed to produce a lyophile called ANT-CA, which was stable over time, showed beneficial effects on cell viability, and had antioxidant, anti-inflammatory, antibacterial, and wound-healing activities. This lyophile could be a valuable ingredient for food or cosmetic applications.


Assuntos
Antocianinas , Nicotiana , Nicotiana/genética , Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Células Vegetais , Flavonóis
2.
Hum Mol Genet ; 26(6): 1087-1103, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087734

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by polyglutamine expansion in the androgen receptor (AR) and characterized by the loss of lower motor neurons. Here we investigated pathological processes occurring in muscle biopsy specimens derived from SBMA patients and, as controls, age-matched healthy subjects and patients suffering from amyotrophic lateral sclerosis (ALS) and neurogenic atrophy. We detected atrophic fibers in the muscle of SBMA, ALS and neurogenic atrophy patients. In addition, SBMA muscle was characterized by the presence of a large number of hypertrophic fibers, with oxidative fibers having a larger size compared with glycolytic fibers. Polyglutamine-expanded AR expression was decreased in whole muscle, yet enriched in the nucleus, and localized to mitochondria. Ultrastructural analysis revealed myofibrillar disorganization and streaming in zones lacking mitochondria and degenerating mitochondria. Using molecular (mtDNA copy number), biochemical (citrate synthase and respiratory chain enzymes) and morphological (dark blue area in nicotinamide adenine dinucleotide-stained muscle cross-sections) analyses, we found a depletion of the mitochondria associated with enhanced mitophagy. Mass spectrometry analysis revealed an increase of phosphatidylethanolamines and phosphatidylserines in mitochondria isolated from SBMA muscles, as well as a 50% depletion of cardiolipin associated with decreased expression of the cardiolipin synthase gene. These observations suggest a causative link between nuclear polyglutamine-expanded AR accumulation, depletion of mitochondrial mass, increased mitophagy and altered mitochondrial membrane composition in SBMA muscle patients. Given the central role of mitochondria in cell bioenergetics, therapeutic approaches toward improving the mitochondrial network are worth considering to support SBMA patients.


Assuntos
Esclerose Lateral Amiotrófica/genética , Transtornos Musculares Atróficos/genética , Peptídeos/genética , Receptores Androgênicos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/fisiopatologia , Androgênios/metabolismo , Animais , Biópsia , DNA Mitocondrial/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitofagia/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/fisiopatologia
3.
Amino Acids ; 51(4): 679-690, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30725223

RESUMO

The preservation of enzymatic activity is a fundamental requirement for exploiting hybrid nano-bio-conjugates, and the control over protein-nanoparticle interactions, leading to stable and catalytically active hybrids, represents the key for designing new biosensing platforms. In this scenario, surface active maghemite nanoparticles (SAMNs) represent a new class of naked magnetic nanoparticles, displaying peculiar electrocatalytic features and the ability to selectively bind proteins. Recombinant aminoaldehyde dehydrogenase from tomato (SlAMADH1) was used as a model protein, and successfully immobilized by self-assembly on the surface of naked SAMNs, where its enzymatic activity resulted preserved for more than 6 months. The hybrid nanomaterial (SAMN@SlAMADH1) was characterized by UV-Vis spectroscopy, mass spectrometry, and TEM microscopy, and applied for the development of a biosensor for the determination of aminoaldehydes in alcoholic beverages. Measurements were carried out in a low volume electrochemical flow cell comprising a SAMN modified carbon paste electrode for the coulometric determination of the NADH produced during the enzymatic catalysis. The present findings, besides representing the first example of an electrochemical biosensor for aminoaldehydes in an alcoholic matrix, open the door to the use of immobilized enzymes on naked metal oxides nanomaterials for biosensing.


Assuntos
Aldeído Desidrogenase/metabolismo , Aldeídos/análise , Técnicas Biossensoriais , Enzimas Imobilizadas/metabolismo , Compostos Férricos/química , Nanopartículas Metálicas/química , Propilaminas/análise , Solanum lycopersicum/enzimologia , Técnicas Eletroquímicas
4.
Biomacromolecules ; 20(3): 1375-1384, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30694655

RESUMO

The ability of peculiar iron oxide nanoparticles (IONPs) to evade the immune system was investigated in vivo. The nanomaterial was provided directly into the farming water of zebrafish ( Danio rerio) and the distribution of IONPs and the delivery of oxytetracycline (OTC) was studied evidencing the successful overcoming of the intestinal barrier and the specific and prolonged (28 days) organotropic delivery of OTC to the fish ovary. Noteworthy, no sign of adverse effects was observed. In fish blood, IONPs were able to specifically bind apolipoprotein A1 (Apo A1) and molecular modeling showed the structural analogy between the IONP@Apo A1 nanoconjugate and high-density lipoprotein (HDL). Thus, the preservation of the biological identity of the protein suggests a plausible explanation of the observed overcoming of the intestinal barrier, of the great biocompatibity of the nanomaterial, and of the prolonged drug delivery (benefiting of the lipoprotein transport route). The present study promises novel and unexpected stealth materials in nanomedicine.


Assuntos
Sistemas de Liberação de Medicamentos , Compostos Férricos/química , Nanopartículas Metálicas/química , Animais , Barreira Hematoencefálica , Cromatografia Líquida de Alta Pressão , Peixes , Espectrometria de Massas , Ligação Proteica
5.
Mol Pharm ; 15(10): 4599-4611, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30148955

RESUMO

Cancer therapies based on the combinations of different drugs and/or treatment modalities are emerging as important strategies for increasing efficacy and cure, decreasing unwanted toxicity, and overcoming drug resistance, provided that optimized drug concentration ratios are delivered into the target tissue. To these purposes, delivery systems such as nanoparticles (NPs) offer the unique opportunity to finely tune the drug loading and the release rate of drug combinations in the target tissues. Here, we propose double-layered polymeric NPs for the delivery of the chemotherapeutic docetaxel (DTX) and the photosensitizer disulfonate tetraphenyl chlorin (TPCS2a) coated with hyaluronic acid (HA), which allows cell targeting via CD44 receptors. The simultaneous delivery of the two drugs aims at killing DTX-sensitive (HeLa-P, MDA-MB-231) and DTX-resistant (HeLa-R) cancer cells by combining chemotherapy and photodynamic therapy (PDT). Using the Chou and Talalay method that analyses drug interactions and calculates combination index (CI) using the median-effect principle, we compared the efficiency of DTX chemotherapy combined with TPCS2a-PDT for drugs delivered in the standard solvents, coloaded in the same NP (DTX/TPCS2a-NP) or loaded in separate NPs (DTX-NPs + TPCS2a-NPs). Along with the drug interaction studies, we gained insight into cell death mechanisms after combo-therapy and into the extent of TPCS2a intracellular uptake and localization. In all cell lines considered, the analysis of the viability data revealed synergistic drug/treatment interaction especially when DTX and TPCS2a were delivered to cells coloaded in the same NPs despite the reduced PS uptake measured in the presence of the delivery systems. In fact, while the combinations of the free drugs or drugs in separate NPs gave slight synergism (CI < 1) only at doses killing more than 50% of the cells, the combination of drugs in one NPs gave high synergism also at doses killing 10-20% of the cells. Furthermore, the DTX dose in the combination DTX/TPCS2a-NPs could be reduced by ∼2.6- and 10.7-fold in HeLa-P and MDA-MB-231, respectively. Importantly, drug codelivery in NPs was very efficient in inducing cell mortality also in DTX resistant HeLa-R cells overexpressing P-glycoprotein 1 in which the dose of the chemotherapeutic can be reduced by more than 100 times using DTX/TPCS2a-NPs. Overall, our data demonstrate that the protocol for the preparation of HA-targeted double layer polymeric NPs allows to control the concentration ratio of coloaded drugs and the delivery of the transported drugs for obtaining a highly synergistic interaction combining DTX-chemotherapy and TPCS2a-PDT.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/farmacologia , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/administração & dosagem , Docetaxel/química , Portadores de Fármacos/química , Interações Medicamentosas , Humanos , Ácido Hialurônico/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química
6.
Anal Bioanal Chem ; 410(12): 2949-2959, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532191

RESUMO

Surface active maghemite nanoparticles (SAMNs) are able to recognize and bind selected proteins in complex biological systems, forming a hard protein corona. Upon a 5-min incubation in bovine whey from mastitis-affected cows, a significant enrichment of a single peptide characterized by a molecular weight at 4338 Da originated from the proteolysis of aS1-casein was observed. Notably, among the large number of macromolecules in bovine milk, the detection of this specific peptide can hardly be accomplished by conventional analytical techniques. The selective formation of a stable binding between the peptide and SAMNs is due to the stability gained by adsorption-induced surface restructuration of the nanomaterial. We attributed the surface recognition properties of SAMNs to the chelation of iron(III) sites on their surface by sterically compatible carboxylic groups of the peptide. The specific peptide recognition by SAMNs allows its easy determination by MALDI-TOF mass spectrometry, and a threshold value of its normalized peak intensity was identified by a logistic regression approach and suggested for the rapid diagnosis of the pathology. Thus, the present report proposes the analysis of hard protein corona on nanomaterials as a perspective for developing fast analytical procedures for the diagnosis of mastitis in cows. Moreover, the huge simplification of proteome complexity by exploiting the selectivity derived by the peculiar SAMN surface topography, due to the iron(III) distribution pattern, could be of general interest, leading to competitive applications in food science and in biomedicine, allowing the rapid determination of hidden biomarkers by a cutting edge diagnostic strategy. Graphical abstract The topography of iron(III) sites on surface active maghemite nanoparticles (SAMNs) allows the recognition of sterically compatible carboxylic groups on proteins and peptides in complex biological matrixes. The analysis of hard protein corona on SAMNs led to the determination of a biomarker for cow mastitis in milk by MALDI-TOF mass spectrometry.


Assuntos
Compostos Férricos/química , Mastite Bovina/diagnóstico , Proteínas do Leite/análise , Nanopartículas/química , Coroa de Proteína/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Soro do Leite/química , Sequência de Aminoácidos , Animais , Biomarcadores/análise , Bovinos , Feminino , Leite/química , Modelos Moleculares , Peptídeos/análise , Proteômica/métodos
7.
Biochim Biophys Acta ; 1860(10): 2202-10, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27155575

RESUMO

BACKGROUND: Mineral iron(III) recognition by bacteria is considered a matter of debate. The peculiar surface chemistry of novel naked magnetic nanoparticles, called SAMNs (surface active maghemite nanoparticles) characterized by solvent exposed Fe(3+) sites on their surface, was exploited for studying mineral iron sensing in Pseudomonas fluorescens. METHODS: SAMNs were applied for mimicking Fe(3+) ions in solution, acting as magnetically drivable probes to evaluate putative Fe(3+) recognition sites on the microorganism surface. Culture broths and nano-bio-conjugates were characterized by UV-Vis spectroscopy and mass spectrometry. RESULTS: The whole heritage of a membrane porin (OprF) of P. fluorescens Ps_22 cells was recognized and firmly bound by SAMNs. The binding of nanoparticles to OprF porin was correlated to a drastic inhibition of a siderophore (pyoverdine) biosynthesis and to the stimulation of the production and rate of formation of a secondary siderophore. The analysis of metabolic pathways, based on P. fluorescens Ps_22 genomic information, evidenced that this putative secondary siderophore does not belong to a selection of the most common siderophores. CONCLUSIONS: In the scenario of an adhesion mechanism, it is plausible to consider OprF as the biological component deputed to the mineral iron sensing in P. fluorescens Ps_22, as well as one key of siderophore regulation. GENERAL SIGNIFICANCE: The present work sheds light on mineral iron sensing in microorganisms. Peculiar colloidal naked iron oxide nanoparticles offer a useful approach for probing the adhesion of bacterial surface on mineral iron for the identification of the specific recognition site for this iron uptake regulation in microorganisms.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Nanopartículas de Magnetita/química , Porinas/genética , Tensoativos/química , Aderência Bacteriana/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Compostos Férricos/química , Ferro/química , Minerais/química , Minerais/metabolismo , Porinas/química , Porinas/metabolismo , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo
8.
Arch Biochem Biophys ; 617: 26-37, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693037

RESUMO

Oxidation of critical signaling protein cysteines regulated by H2O2 has been considered to involve sulfenic acid (RSOH) formation. RSOH may subsequently form either a sulfenyl amide (RSNHR') with a neighboring amide, or a mixed disulfide (RSSR') with another protein cysteine or glutathione. Previous studies have claimed that RSOH can be detected as an adduct (e.g., with 5,5-dimethylcyclohexane-1,3-dione; dimedone). Here, kinetic data are discussed which indicate that few proteins can form RSOH under physiological signaling conditions. We also present experimental evidence that indicates that (1) dimedone reacts rapidly with sulfenyl amides, and more rapidly than with sulfenic acids, and (2) that disulfides can react reversibly with amides to form sulfenyl amides. As some proteins are more stable as the sulfenyl amide than as a glutathionylated species, the former may account for some of the species previously identified as the "sulfenome" - the cellular complement of reversibly-oxidized thiol proteins generated via sulfenic acids.


Assuntos
Cicloexanonas/química , Cisteína/química , Oxigênio/química , Ácidos Sulfênicos/química , Amidas/química , Dissulfetos/química , Glutationa/química , Humanos , Peróxido de Hidrogênio/química , Cinética , Espectrometria de Massas , Oxirredução , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Transdução de Sinais , Compostos de Sulfidrila/química
9.
Arch Biochem Biophys ; 617: 120-128, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27638050

RESUMO

Reversible oxidation of Cys residues is a crucial element of redox homeostasis and signaling. According to a popular concept in oxidative stress signaling, the oxidation of targets of signals can only take place following an overwhelming of the cellular antioxidant capacity. This concept, however, ignores the activation of feedback mechanisms possibly leading to a paradoxical effect. In a model of cancer stem cells (CSC), stably overexpressing the TAZ oncogene, we observed that the increased formation of oxidants is associated with a globally more reduced state of proteins. Redox proteomics revealed that several proteins, capable of undergoing reversible redox transitions, are indeed more reduced while just few are more oxidized. Among the proteins more oxidized, G6PDH emerges as both more expressed and activated by oxidation. This accounts for the observed more reduced state of the NADPH/NADP+ couple. The dynamic redox flux generating this apparently paradoxical effect is rationalized in a computational system biology model highlighting the crucial role of G6PDH activity on the rate of redox transitions eventually leading to the reduction of reversible redox switches.


Assuntos
Células-Tronco Neoplásicas/citologia , Oxirredução , Linhagem Celular Transformada , Linhagem Celular Tumoral , Glucosefosfato Desidrogenase/metabolismo , Glutarredoxinas/metabolismo , Humanos , Mutação , Nucleotídeos/genética , Estresse Oxidativo , Oxigênio/química , Proteômica , Piridinas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
10.
Chemistry ; 22(20): 6846-52, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27060887

RESUMO

Dichromate binds to surface-active maghemite nanoparticles (SAMNs) to form a stable core-shell nanostructures (SAMN@Cr(VI) ). The hybrid was characterized by Mössbauer spectroscopy, high-angle annular dark-field imaging, electron energy-loss spectroscopy, and electrochemical techniques, which revealed a strong interaction of dichromate with the nanoparticle surface. Electrochemical characterization showed lower charge-transfer resistance, better electrochemical performance, and more reversible electrochemical behavior with respect to naked SAMNs. Moreover, SAMN@Cr(VI) is an excellent electrocatalyst for hydrogen peroxide reduction. Furthermore, an enzyme, namely, bovine serum amine oxidase (BSAO: EC 1.4.3.6), was immobilized on SAMN@Cr(VI) by self-assembly to give a ternary hybrid nanostructured catalyst for polyamine oxidation (SAMN@Cr(VI) -BSAO). SAMN@Cr(VI) -BSAO was applied for the development of a reagentless, fast, inexpensive, and interference-free polyamine biosensor, which was successfully exploited for the discrimination of tumorous tissue from healthy tissue in human crude liver extracts.


Assuntos
Compostos Férricos/química , Neoplasias Hepáticas/diagnóstico , Nanopartículas/química , Neoplasias/diagnóstico , Poliaminas/análise , Animais , Técnicas Biossensoriais/métodos , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/diagnóstico , Bovinos , Técnicas Eletroquímicas , Enzimas Imobilizadas , Humanos , Neoplasias Hepáticas/química , Fenômenos Magnéticos , Nanomedicina , Neoplasias/química , Oxirredução , Oxirredutases/química , Tamanho da Partícula , Propriedades de Superfície
11.
Redox Biol ; 64: 102806, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37413766

RESUMO

The aim of this study was to examine, in biochemical detail, the functional role of the Arg152 residue in the selenoprotein Glutathione Peroxidase 4 (GPX4), whose mutation to His is involved in Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD). Wild-type and mutated recombinant enzymes with selenopcysteine (Sec) at the active site, were purified and structurally characterized to investigate the impact of the R152H mutation on enzymatic function. The mutation did not affect the peroxidase reaction's catalytic mechanism, and the kinetic parameters were qualitatively similar between the wild-type enzyme and the mutant when mixed micelles and monolamellar liposomes containing phosphatidylcholine and its hydroperoxide derivatives were used as substrate. However, in monolamellar liposomes also containing cardiolipin, which binds to a cationic area near the active site of GPX4, including residue R152, the wild-type enzyme showed a non-canonical dependency of the reaction rate on the concentration of both enzyme and membrane cardiolipin. To explain this oddity, a minimal model was developed encompassing the kinetics of both the enzyme interaction with the membrane and the catalytic peroxidase reaction. Computational fitting of experimental activity recordings showed that the wild-type enzyme was surface-sensing and prone to "positive feedback" in the presence of cardiolipin, indicating a positive cooperativity. This feature was minimal, if any, in the mutant. These findings suggest that GPX4 physiology in cardiolipin containing mitochondria is unique, and emerges as a likely target of the pathological dysfunction in SSMD.


Assuntos
Cardiolipinas , Lipossomos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Cardiolipinas/metabolismo , Mutação
12.
Free Radic Biol Med ; 188: 117-133, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718302

RESUMO

The purification of a protein inhibiting lipid peroxidation led to the discovery of the selenoperoxidase GPx4 forty years ago. Thus, the evidence of the enzymatic activity was reached after identifying the biological effect and unambiguously defined the relationship between the biological function and the enzymatic activity. In the syllogism where GPx4 inhibits lipid peroxidation and its inhibition is lethal, cell death is operated by lipid peroxidation. Based on this rationale, this form of cell death emerged as regulated iron-enforced oxygen toxicity and was named ferroptosis in 2012. In the last decades, we learned that reduction of lipid hydroperoxides is indispensable and, in cooperation with prooxidant systems, controls the critical steady state of lipid peroxidation. This concept defined the GPx4 reaction as both the target for possible anti-cancer therapy and if insufficient, as cause of degenerative diseases. We know the reaction mechanism, but the details of the interaction at the membrane cytosol interface are still poorly defined. We know the gene structure, but the knowledge about expression control is still limited. The same holds true for post-transcriptional modifications. Reverse genetics indicate that GPx4 has a role in inflammation, immunity, and differentiation, but the observations emerging from these studies need a more specifically addressed biochemical evidence. Finally, the role of GPx4 in spermatogenesis disclosed an area unconnected to lipid peroxidation. In its mitochondrial and nuclear form, the peroxidase catalyzes the oxidation of protein thiols in two specific aspects of sperm maturation: stabilization of the mid-piece and chromatin compaction. Thus, although available evidence converges to the notion that GPx4 activity is vital due to the inhibition of lipid peroxidation, it is reasonable to foresee other unknown aspects of the GPx4 reaction to be disclosed.


Assuntos
Ferroptose , Sêmen , Antioxidantes/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Peroxidação de Lipídeos , Peróxidos Lipídicos/metabolismo , Masculino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sêmen/metabolismo
13.
Photochem Photobiol Sci ; 10(11): 1751-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21874194

RESUMO

We studied the effects of density and thickness of PEG coating on in vitro cellular uptake, and dark- and photo-toxicity of liposomal formulations (Fospeg) of the photodynamic agent meta-tetrahydroxyphenyl chlorin (m-THPC). The cellular uptake of various Fospeg formulations was determined by flow cytometry in CCD-34Lu human normal fibroblasts and A549 lung cancer cells. Dark and light-induced cytotoxicity was measured by MTS assay after exposure to increasing concentrations of Fospeg only and followed by irradiation with red light. Intracellular localization of m-THPC delivered by Fospeg was determined by fluorescence microscopy. The studies were carried out in comparison with m-THPC delivered by the standard solvent. In the dark all Fospeg formulations were less cytotoxic than m-THPC in standard solvent (ethanol/poly(ethylene glycol 400/water; 20 : 30 : 50 by vol.) and cytotoxicity decreased by increasing PEGylation. m-THPC delivered as Fospeg was internalised by endocytosis and localised mainly in the Golgi apparatus and endoplasmic reticulum. The efficiency of cellular uptake of Fospeg was reduced by 30-40% with respect to m-THPC in standard solution causing a slight reduction of the phototoxicity but without serious impairment of the efficacy of the treatment. Our study suggests that PEGylated liposomes are promising nanocarriers for the delivery of photosensitisers for photodynamic therapy because they reduce dark cytotoxicity while preserving therapeutic efficacy.


Assuntos
Lipossomos/química , Mesoporfirinas/toxicidade , Fármacos Fotossensibilizantes/toxicidade , Polietilenoglicóis/química , Linhagem Celular , Endocitose , Humanos , Luz , Microscopia de Fluorescência
14.
Antioxidants (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803398

RESUMO

A "green" solvent-free industrial process (patent pending) is here described for a grape seed extract (GSE) preparation (Ecovitis™) obtained from selected seeds of Veneto region wineries, in the northeast of Italy, by water and selective tangential flow filtration at different porosity. Since a comprehensive, non-ambiguous characterization of GSE is still a difficult task, we resorted to using an integrated combination of gel permeation chromatography (GPC) and electrospray ionization high resolution mass spectrometry (ESI-HRMS). By calibration of retention time and spectroscopic quantification of catechin as chromophore, we succeeded in quantifying GPC polymers up to traces at n = 30. The MS analysis carried out by the ESI-HRMS method by direct-infusion allows the detection of more than 70 species, at different polymerization and galloylation, up to n = 13. This sensitivity took advantage of the nanoscale shotgun approach, although paying the limit of missed separation of stereoisomers. GPC and MS approaches were remarkably well cross-validated by overlapping results. This simple integrated analytical approach has been used for quality control of the production of Ecovitis™. The emerging feature of Ecovitis™ vs. a popular benchmark in the market, produced by a different technology, is the much lower content of species at low n and the corresponding increase of species at high n.

15.
Redox Biol ; 46: 102070, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34304108

RESUMO

Selenoproteins are translated via animal domain-specific elongation machineries that redefine dedicated UGA opal codons from termination of translation to selenocysteine (Sec) insertion, utilizing specific tRNA species and Sec-specific elongation factors. This has made recombinant production of mammalian selenoproteins in E. coli technically challenging but recently we developed a methodology that enables such production, using recoding of UAG for Sec in an RF1-deficient host strain. Here we used that approach for production of the human glutathione peroxidases 1, 2 and 4 (GPX1, GPX2 and GPX4), with all these three enzymes being important antioxidant selenoproteins. Among these, GPX4 is the sole embryonically essential enzyme, and is also known to be essential for spermatogenesis as well as protection from cell death through ferroptosis. Enzyme kinetics, ICP-MS and mass spectrometry analyses of the purified recombinant proteins were used to characterize selenoprotein characteristics and their Sec contents. This revealed a unique phenomenon of one-codon skipping, resulting in a lack of a single amino acid at the position corresponding to the selenocysteine (Sec) residue, in about 30% of the recombinant GPX isoenzyme products. We furthermore confirmed the previously described UAG suppression with Lys or Gln as well as a minor suppression with Tyr, together resulting in about 20% Sec contents in the full-length proteins. No additional frameshifts or translational errors were detected. We subsequently found that Sec-containing GPX4 could be further purified over a bromosulfophthalein-column, yielding purified recombinant GPX4 with close to complete Sec contents. This production method for homogenously purified GPX4 should help to further advance the studies of this important selenoprotein.


Assuntos
Escherichia coli , Sulfobromoftaleína , Animais , Códon de Terminação , Escherichia coli/genética , Humanos , Masculino , Selenocisteína , Selenoproteínas/genética
16.
Free Radic Biol Med ; 167: 45-53, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711415

RESUMO

Ferroptosis is a non-accidental, regulated form of cell death operated by lipid peroxidation under strict control of GPx4 activity. This is consistent with the notion that lipid peroxidation is initiated by radicals produced from decomposition of traces of pre-existing lipid hydroperoxides. The question, therefore, emerges about the formation of these traces of lipid hydroperoxides interacting with Fe2+. In the most realistic option, they are produced by oxygen activated species generated during aerobic metabolism. Screening for metabolic sources of superoxide supporting ferroptosis induced by GSH depletion, we failed to detect, in our cell model, a role of respiratory chain. We observed instead that the pyruvate dehydrogenase complex -as other α keto acid dehydrogenases already known as a major source of superoxide in mitochondria- supports ferroptosis. The opposite effect on ferroptosis by silencing either the E1 or the E3 subunit of the pyruvate dehydrogenase complex pointed out the autoxidation of dihydrolipoamide as the source of superoxide. We finally observed that GSH depletion activates superoxide production, seemingly through the inhibition of the specific kinase that inhibits pyruvate dehydrogenase. In summary, this set of data is compatible with a scenario where the more electrophilic status produced by GSH depletion not only activates ferroptosis by preventing GPx4 activity, but also favors the formation of lipid hydroperoxides. In an attractive perspective of tissue homeostasis, it is the activation of energetic metabolism associated to a decreased nucleophilic tone that, besides supporting energy demanding proliferation, also sensitizes cells to a regulated form of death.


Assuntos
Ferroptose , Morte Celular , Peroxidação de Lipídeos , Peróxidos Lipídicos , Ácido Pirúvico
17.
Int J Biol Macromol ; 164: 1715-1728, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758605

RESUMO

The knowledge of protein-nanoparticle interplay is of crucial importance to predict the fate of nanomaterials in biological environments. Indeed, protein corona on nanomaterials is responsible for the physiological response of the organism, influencing cell processes, from transport to accumulation and toxicity. Herein, a comparison using four different proteins reveals the existence of patterned regions of carboxylic groups acting as recognition sites for naked iron oxide nanoparticles. Readily interacting proteins display a distinctive surface distribution of carboxylic groups, recalling the geometric shape of an ellipse. This is morphologically complementary to nanoparticles curvature and compatible with the topography of exposed FeIII sites laying on the nanomaterial surface. The recognition site, absent in non-interacting proteins, promotes the nanoparticle harboring and allows the formation of functional protein coronas. The present work envisages the possibility of predicting the composition and the biological properties of protein corona on metal oxide nanoparticles.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro/química , Coroa de Proteína/química , Compostos Férricos/química , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/química , Nanopartículas/metabolismo , Ligação Proteica/fisiologia , Propriedades de Superfície
18.
FEBS Lett ; 594(4): 611-624, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581313

RESUMO

Ras-selective lethal small molecule 3 (RSL3), a drug candidate prototype for cancer chemotherapy, triggers ferroptosis by inactivating the glutathione peroxidase glutathione peroxidase 4 (GPx4). Here, we report the purification of the protein indispensable for GPx4 inactivation by RSL3. Mass spectrometric analysis identified 14-3-3 isoforms as candidates, and recombinant human 14-3-3ε confirms the identification. The function of 14-3-3ε is redox-regulated. Moreover, overexpression or silencing of the gene coding for 14-3-3ε consistently controls the inactivation of GPx4 by RSL3. The interaction of GPx4 with a redox-regulated adaptor protein operating in cell signaling further contributes to frame it within redox-regulated pathways of cell survival and death and opens new therapeutic perspectives.


Assuntos
Proteínas 14-3-3/metabolismo , Carbolinas/farmacologia , Ferroptose/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Ratos
19.
Redox Biol ; 28: 101328, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31574461

RESUMO

Ferroptosis is a form of cell death primed by iron and lipid hydroperoxides and prevented by GPx4. Ferrostatin-1 (fer-1) inhibits ferroptosis much more efficiently than phenolic antioxidants. Previous studies on the antioxidant efficiency of fer-1 adopted kinetic tests where a diazo compound generates the hydroperoxyl radical scavenged by the antioxidant. However, this reaction, accounting for a chain breaking effect, is only minimally useful for the description of the inhibition of ferrous iron and lipid hydroperoxide dependent peroxidation. Scavenging lipid hydroperoxyl radicals, indeed, generates lipid hydroperoxides from which ferrous iron initiates a new peroxidative chain reaction. We show that when fer-1 inhibits peroxidation, initiated by iron and traces of lipid hydroperoxides in liposomes, the pattern of oxidized species produced from traces of pre-existing hydroperoxides is practically identical to that observed following exhaustive peroxidation in the absence of the antioxidant. This supported the notion that the anti-ferroptotic activity of fer-1 is actually due to the scavenging of initiating alkoxyl radicals produced, together with other rearrangement products, by ferrous iron from lipid hydroperoxides. Notably, fer-1 is not consumed while inhibiting iron dependent lipid peroxidation. The emerging concept is that it is ferrous iron itself that reduces fer-1 radical. This was supported by electroanalytical evidence that fer-1 forms a complex with iron and further confirmed in cells by fluorescence of calcein, indicating a decrease of labile iron in the presence of fer-1. The notion of such as pseudo-catalytic cycle of the ferrostatin-iron complex was also investigated by means of quantum mechanics calculations, which confirmed the reduction of an alkoxyl radical model by fer-1 and the reduction of fer-1 radical by ferrous iron. In summary, GPx4 and fer-1 in the presence of ferrous iron, produces, by distinct mechanism, the most relevant anti-ferroptotic effect, i.e the disappearance of initiating lipid hydroperoxides.


Assuntos
Cicloexilaminas/farmacologia , Ferroptose/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Cromatografia Líquida , Cicloexilaminas/química , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Ferroptose/genética , Hidrogênio/química , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos Lipídicos/metabolismo , Lipidômica/métodos , Lipídeos/química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Fenilenodiaminas/química , Espectrometria de Massas em Tandem
20.
Free Radic Biol Med ; 147: 80-89, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857233

RESUMO

GPx8 is a glutathione peroxidase homolog inserted in the membranes of endoplasmic reticulum (ER), where it seemingly plays a role in controlling redox status by preventing the spill of H2O2. We addressed the impact of GPx8 silencing on the lipidome of microsomal membranes, using stably GPx8-silenced HeLa cells. The two cell lines were clearly separated by Principal Component Analysis (PCA) and Partial Least Square Discriminant analysis (PLS-DA) of lipidome. Considering in detail the individual lipid classes, we observed that unsaturated glycerophospholipids (GPL) decreased, while only in phosphatidylinositols (PI) a substitution of monounsaturated fatty acids (MUFA) for polyunsaturated fatty acids (PUFA) was observed. Among sphingolipids (SL), ceramides (CER) decreased while sphingomyelins (SM) and neutral glycophingolipids (nGSL) increased. Here, in addition, longer chains than in controls in the amide fatty acid were present. The increase up to four folds of the CER (d18:1; c24:0) containing three hexose units, was the most remarkable species increasing in the differential lipidome of siGPx8 cells. Quantitative RT-PCR complied with lipidomic analysis specifically showing an increased expression of: i) acyl-CoA synthetase 5 (ACSL5); ii) CER synthase 2 and 4; iii) CER transporter (CERT); iv) UDP-glucosyl transferase (UDP-GlcT), associated to a decreased expression of UDP-galactosyl transferase (UDP-GalT). A role of the unfolded protein response (UPR) and the spliced form of the transcription factor XBP1 on the transcriptional changes of GPx8 silenced cells was ruled-out. Similarly, also the involvement of Nrf2 and NF-κB. Altogether our results indicate that GPx8-silencing of HeLa yields a membrane depleted by about 24% of polyunsaturated GPL and a corresponding increase of saturated or monounsaturated SM and specific nGSL. This is tentatively interpreted as an adaptive mechanism leading to an increased resistance to radical oxidations. Moreover, the marked shift of fatty acid composition of PI emerges as a possibly relevant issue in respect to the impact of GPx8 on signaling pathways.


Assuntos
Retículo Endoplasmático , Peróxido de Hidrogênio , Ceramidas , Glutationa Peroxidase/genética , Células HeLa , Humanos , Peroxidases
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa