Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165195

RESUMO

Mg2GeO4 is important as an analog for the ultrahigh-pressure behavior of Mg2SiO4, a major component of planetary interiors. In this study, we have investigated magnesium germanate to 275 GPa and over 2,000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with the formation of a phase with disordered Mg and Ge, in which germanium adopts eightfold coordination with oxygen: the cubic, Th3P4-type structure. DFT computations suggest partial Mg-Ge order, resulting in a tetragonal [Formula: see text] structure indistinguishable from [Formula: see text] Th3P4 in our experiments. If applicable to silicates, the formation of this highly coordinated and intrinsically disordered phase may have important implications for the interior mineralogy of large, rocky extrasolar planets.

2.
J Synchrotron Radiat ; 25(Pt 6): 1860-1868, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407199

RESUMO

In this article, the specification and application of the new double-sided YAG laser-heating system built on beamline I15 at Diamond Light Source are presented. This system, combined with diamond anvil cell and X-ray diffraction techniques, allows in situ and ex situ characterization of material properties at extremes of pressure and temperature. In order to demonstrate the reliability and stability of this experimental setup over a wide range of pressure and temperature, a case study was performed and the phase diagram of lead was investigated up to 80 GPa and 3300 K. The obtained results agree with previously published experimental and theoretical data, underlining the quality and reliability of the installed setup.

3.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391287

RESUMO

Accurate and precise measurements of spectroradiometric temperature are crucial for many high pressure experiments that use diamond anvil cells or shock waves. In experiments with sub-millisecond timescales, specialized detectors such as streak cameras or photomultiplier tubes are required to measure temperature. High accuracy and precision are difficult to attain, especially at temperatures below 3000 K. Here, we present a new spectroradiometry system based on multianode photomultiplier tube technology and passive readout circuitry that yields a 0.24 µs rise-time for each channel. Temperature is measured using five color spectroradiometry. During high pressure pulsed Joule heating experiments in a diamond anvil cell, we document measurement precision to be ±30 K at temperatures as low as 2000 K during single-shot heating experiments with 0.6 µs time-resolution. Ambient pressure melting tests using pulsed Joule heating indicate that the accuracy is ±80 K in the temperature range 1800-2700 K.

4.
Sci Rep ; 14(1): 11412, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762593

RESUMO

With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30-50 µm range. We present a 30 µm culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300 K equations of state fit to our P-V data collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to > 4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.

5.
J Geophys Res Solid Earth ; 127(11): e2022JB025117, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36590903

RESUMO

FeO represents an important end-member for planetary interiors mineralogy. However, its properties in the liquid state under high pressure are poorly constrained. Here, in situ high-pressure and high-temperature X-ray diffraction experiments, ab initio simulations, and thermodynamic calculations are combined to study the local structure and density evolution of liquid FeO under extreme conditions. Our results highlight a strong shortening of the Fe-Fe distance, particularly pronounced between ambient pressure and ∼40 GPa, possibly related with the insulator to metal transition occurring in solid FeO over a similar pressure range. Liquid density is smoothly evolving between 60 and 150 GPa from values calculated for magnetic liquid to those calculated for non-magnetic liquid, compatibly with a continuous spin crossover in liquid FeO. The present findings support the potential decorrelation between insulator/metal transition and the high-spin to low-spin continuous transition, and relate the changes in the microscopic structure with macroscopic properties, such as the closure of the Fe-FeO miscibility gap. Finally, these results are used to construct a parameterized thermal equation of state for liquid FeO providing densities up to pressure and temperature conditions expected at the Earth's core-mantle boundary.

6.
Sci Rep ; 10(1): 11663, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669572

RESUMO

X-ray absorption spectroscopy (XAS) is a widely used technique to probe the local environment around specific atomic species. Applied to samples under extreme pressure and temperature conditions, XAS is sensitive to phase transitions, including melting, and allows gathering insights on compositional variations and electronic changes occurring during such transitions. These characteristics can be exploited for studies of prime interest in geophysics and fundamental high-pressure physics. Here, we investigated the melting curve and the eutectic composition of four geophysically relevant iron binary systems: Fe-C, Fe-O, Fe-S and Fe-Si. Our results show that all these systems present the same spectroscopic signatures upon melting, common to those observed for other pure late 3d transition metals. The presented melting criterion seems to be general for late 3d metals bearing systems. Additionally, we demonstrate the suitability of XAS to extract melt compositional information in situ, such as the evolution of the concentration of light elements with increasing temperature. Diagnostics presented in this work can be applied to studies over an even larger pressure range exploiting the upgraded synchrotron machines, and directly transferred to time-resolved extreme condition studies using dynamic compression (ns) or fast laser heating (ms).

7.
Sci Rep ; 9(1): 15537, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664104

RESUMO

The isothermal equation of state of silicon has been determined by synchrotron x-ray diffraction experiments up to 105.2 GPa at room temperature using diamond anvil cells. A He-pressure medium was used to minimize the effect of uniaxial stress on the sample volume and ruby, gold and tungsten pressure gauges were used. Seven different phases of silicon have been observed along the experimental conditions covered in the present study.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa