Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Immunol ; 23(6): 927-939, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624205

RESUMO

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Hipóxia/etiologia , Inflamação/complicações , Pulmão , Lesão Pulmonar/complicações , Camundongos
3.
Am J Respir Crit Care Med ; 200(2): 235-246, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849228

RESUMO

Rationale: Acute respiratory distress syndrome is defined by the presence of systemic hypoxia and consequent on disordered neutrophilic inflammation. Local mechanisms limiting the duration and magnitude of this neutrophilic response remain poorly understood. Objectives: To test the hypothesis that during acute lung inflammation tissue production of proresolution type 2 cytokines (IL-4 and IL-13) dampens the proinflammatory effects of hypoxia through suppression of HIF-1α (hypoxia-inducible factor-1α)-mediated neutrophil adaptation, resulting in resolution of lung injury. Methods: Neutrophil activation of IL4Ra (IL-4 receptor α) signaling pathways was explored ex vivo in human acute respiratory distress syndrome patient samples, in vitro after the culture of human peripheral blood neutrophils with recombinant IL-4 under conditions of hypoxia, and in vivo through the study of IL4Ra-deficient neutrophils in competitive chimera models and wild-type mice treated with IL-4. Measurements and Main Results: IL-4 was elevated in human BAL from patients with acute respiratory distress syndrome, and its receptor was identified on patient blood neutrophils. Treatment of human neutrophils with IL-4 suppressed HIF-1α-dependent hypoxic survival and limited proinflammatory transcriptional responses. Increased neutrophil apoptosis in hypoxia, also observed with IL-13, required active STAT signaling, and was dependent on expression of the oxygen-sensing prolyl hydroxylase PHD2. In vivo, IL-4Ra-deficient neutrophils had a survival advantage within a hypoxic inflamed niche; in contrast, inflamed lung treatment with IL-4 accelerated resolution through increased neutrophil apoptosis. Conclusions: We describe an important interaction whereby IL4Rα-dependent type 2 cytokine signaling can directly inhibit hypoxic neutrophil survival in tissues and promote resolution of neutrophil-mediated acute lung injury.


Assuntos
Lesão Pulmonar Aguda/imunologia , Subunidade alfa de Receptor de Interleucina-4/imunologia , Interleucina-4/imunologia , Neutrófilos/imunologia , Receptores de Superfície Celular/imunologia , Síndrome do Desconforto Respiratório/imunologia , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Subunidade alfa de Receptor de Interleucina-4/genética , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
4.
J Immunol ; 192(5): 2442-8, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24470502

RESUMO

CD4(+) T cells have long been grouped into distinct helper subsets on the basis of their cytokine-secretion profile. In recent years, several subsets of innate lymphoid cell have been described as key producers of these same Th-associated cytokines. However, the functional relationship between Th cells and innate lymphoid cells (ILCs) remains unclear. We show in this study that lineage-negative ST2(+)ICOS(+)CD45(+) type 2 ILCs and CD4(+) T cells can potently stimulate each other's function via distinct mechanisms. CD4(+) T cell provision of IL-2 stimulates type 2 cytokine production by type 2 ILCs. By contrast, type 2 ILCs modulate naive T cell activation in a cell contact-dependent manner, favoring Th2 while suppressing Th1 differentiation. Furthermore, a proportion of type 2 ILCs express MHC class II and can present peptide Ag in vitro. Importantly, cotransfer experiments show that type 2 ILCs also can boost CD4(+) T cell responses to Ag in vivo.


Assuntos
Antígenos de Diferenciação/imunologia , Diferenciação Celular/imunologia , Citocinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata/fisiologia , Células Th2/imunologia , Animais , Antígenos de Diferenciação/genética , Diferenciação Celular/genética , Citocinas/genética , Antígenos de Histocompatibilidade Classe II/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Th1/citologia , Células Th1/imunologia , Células Th2/citologia
5.
Trends Immunol ; 33(8): 389-96, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609147

RESUMO

Interleukin (IL)-33 is a member of the IL-1 cytokine family that has been shown to play an important role in the induction and effector phases of type 2 immune responses. Both innate and adaptive immunity are regulated by IL-33, and many studies have shown disease-associated functions for this cytokine. Recently, IL-33 has been implicated in the function of novel innate lymphocyte populations that regulate both protective responses in parasitic infections and allergic airway inflammation. Here, we discuss recent data highlighting the dual roles of IL-33 in protective and deleterious immune responses.


Assuntos
Imunidade Inata , Interleucinas/imunologia , Tecido Linfoide/imunologia , Animais , Humanos , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 108(22): 9220-5, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21576463

RESUMO

Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2(-/-)) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants.


Assuntos
Óxido Nítrico/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Células Th17/metabolismo , Animais , Doenças Autoimunes/metabolismo , Proliferação de Células , GMP Cíclico/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Humanos , Inflamação , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucinas/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Receptores de Interleucina/metabolismo , Interleucina 22
7.
J Allergy Clin Immunol ; 132(3): 686-695.e7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23608732

RESUMO

BACKGROUND: Cypress pollen causes respiratory syndromes with different grades of severity, including asthma. IL-33, its receptor ST2, and dendritic cells (DCs) have been implicated in human respiratory allergy. OBJECTIVE: We sought to define a new mouse model of allergy to cypress pollen that recapitulates clinical parameters in allergic patients and to evaluate the implications of DCs and the IL-33/ST2 pathway in this pathology. METHODS: BALB/c mice, either wild-type or ST2 deficient (ST2(-/-)), were sensitized and challenged with the Cupressus arizonica major allergen nCup a 1. Local and systemic allergic responses were evaluated. Pulmonary cells were characterized by means of flow cytometry. DCs were stimulated with nCup a 1 and tested for their biological response to IL-33 in coculture assays. RESULTS: nCup a 1 causes a respiratory syndrome closely resembling human pollinosis in BALB/c mice. nCup a 1-treated mice exhibit the hallmarks of allergic pathology associated with pulmonary infiltration of eosinophils, T cells, and DCs and a dominant TH2-type immune response. IL-33 levels were increased in lungs and sera of nCup a 1-treated mice and in subjects with cypress allergy. The allergen-specific reaction was markedly reduced in ST2(-/-) mice, which showed fewer infiltrating eosinophils, T cells, and DCs in the lungs. Finally, stimulation of DCs with nCup a 1 resulted in ST2 upregulation that endowed DCs with increased ability to respond to IL-33-mediated differentiation of IL-5- and IL-13-producing CD4 T cells. CONCLUSIONS: Our findings define a novel preclinical model of allergy to cypress pollen and provide the first evidence of a functionally relevant linkage between pollen allergens and TH2-polarizing activity by DCs through IL-33/ST2.


Assuntos
Antígenos de Plantas/imunologia , Asma/imunologia , Cupressus/imunologia , Modelos Animais de Doenças , Pólen/imunologia , Receptores de Interleucina/imunologia , Animais , Células Dendríticas/imunologia , Eosinófilos/imunologia , Feminino , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
8.
J Allergy Clin Immunol ; 130(5): 1159-1166.e6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22738676

RESUMO

BACKGROUND: The IL-1 family cytokine IL-33 is involved in the induction of airway inflammation in allergic patients and after viral infection. Several cell types, including CD4(+) T(H)2 cells and the recently described type 2 innate lymphoid cells (ILCs), are targets for IL-33, yet the mechanisms by which this cytokine modulates their activation are not clear. OBJECTIVES: Our goal was to investigate a role for mammalian target of rapamycin (mTOR) signaling in the activation of T(H)2 and ILC responses and the induction of airway inflammation by IL-33. METHODS: We biochemically determined the effect of IL-33 on mTOR activation in T(H)2 cells and ILCs and examined the effect of this signaling pathway in vivo using a murine model of IL-33-induced lung inflammation. RESULTS: We found that IL-33 induces mTOR activation through p110δ phosphoinositide 3-kinase and that blockade of the mTOR pathway inhibited IL-33-induced IL-5 and IL-13 production by T(H)2 cells and ILCs. Furthermore, use of a ribosomal protein S6 kinase 1 inhibitor implicated a role for ribosomal protein S6 kinase 1 in IL-33-induced mTOR-dependent cytokine production. Intranasal administration of IL-33 to wild-type mice induced airway inflammation, whereas adoptive transfer of wild-type ILCs to IL-33 receptor-deficient (St2(-/-)) mice recapitulated this response. Importantly, coadministration of the mTOR inhibitor rapamycin reduced IL-33-dependent ILC, macrophage, and eosinophil accumulation; cytokine secretion; and mucus deposition in the airways. CONCLUSION: These data reveal a hitherto unrecognized role of mTOR signaling in IL-33-driven, ILC-dependent inflammation in vivo and suggest that manipulation of this pathway might represent a target for therapeutic intervention for airway inflammation.


Assuntos
Interleucinas/administração & dosagem , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Serina-Treonina Quinases TOR/metabolismo , Células Th2/efeitos dos fármacos , Animais , Células Cultivadas , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-13/metabolismo , Interleucina-33 , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pneumonia/induzido quimicamente , Receptores de Interleucina/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th2/imunologia , Células Th2/transplante
9.
J Immunol ; 183(10): 6469-77, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19841166

RESUMO

Alternatively activated macrophages (AAM) play a crucial role in type 2 immunity. Mice deficient in ST2, a receptor for the latest member of the IL-1 family, IL-33, have impaired type 2 immune responses. We therefore reasoned that IL-33/ST2 signaling may be involved in the differentiation and activation of AAM during airway inflammation. We report here that IL-33 changed the quiescent phenotype of alveolar macrophages toward an AAM phenotype that expressed mannose receptor, IL-4Ralpha, and produced high levels of CCL24 and CCL17 in an IL-13-dependent manner during IL-33-induced airway inflammation. Neutralization of AAM-derived CCL24 led to an amelioration of IL-33-induced eosinophilia in the lungs. Moreover, depletion of alveolar macrophages reduced IL-33-induced airway inflammation. Additionally, the attenuated OVA-induced airway inflammation in ST2(-/-) mice was associated with a decrease in AAM differentiation. In vitro, IL-33 amplified IL-13-induced polarization of alveolar- and bone marrow-derived macrophage toward an AAM phenotype by increasing the expression of arginase I, Ym1, as well as the production of CCL24 and CCL17. IL-13/IL-4Ralpha signaling was crucial for IL-33-driven AAM amplification by inducing the expression of ST2L. Finally, we showed that IL-33 was more abundantly expressed in the lung epithelial cells of asthma patients than those from healthy controls, suggesting that IL-33 may be involved in lung macrophage activation in clinical asthma. Taken together, we demonstrate here that IL-33/ST2 plays a significant role in the amplification of AAM polarization and chemokine production which contribute to innate and Ag-induced airway inflammation.


Assuntos
Polaridade Celular/imunologia , Células Epiteliais/imunologia , Inflamação/imunologia , Interleucinas/imunologia , Macrófagos Alveolares/imunologia , Receptores de Interleucina/imunologia , Adulto , Animais , Asma/imunologia , Asma/metabolismo , Quimiocina CCL17/imunologia , Quimiocina CCL17/metabolismo , Quimiocina CCL24/imunologia , Quimiocina CCL24/metabolismo , Eosinofilia/imunologia , Células Epiteliais/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-33 , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pessoa de Meia-Idade , Ovalbumina/imunologia , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Receptores de Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/imunologia , Receptores de Interleucina-4/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Transdução de Sinais/imunologia
10.
Sci Immunol ; 6(65): eabj2132, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797692

RESUMO

Alveolar macrophages are the most abundant macrophages in the healthy lung where they play key roles in homeostasis and immune surveillance against airborne pathogens. Tissue-specific differentiation and survival of alveolar macrophages rely on niche-derived factors, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor­ß (TGF-ß). However, the nature of the downstream molecular pathways that regulate the identity and function of alveolar macrophages and their response to injury remain poorly understood. Here, we identify that the transcription factor EGR2 is an evolutionarily conserved feature of lung alveolar macrophages and show that cell-intrinsic EGR2 is indispensable for the tissue-specific identity of alveolar macrophages. Mechanistically, we show that EGR2 is driven by TGF-ß and GM-CSF in a PPAR-γ­dependent manner to control alveolar macrophage differentiation. Functionally, EGR2 was dispensable for the regulation of lipids in the airways but crucial for the effective handling of the respiratory pathogen Streptococcus pneumoniae. Last, we show that EGR2 is required for repopulation of the alveolar niche after sterile, bleomycin-induced lung injury and demonstrate that EGR2-dependent, monocyte-derived alveolar macrophages are vital for effective tissue repair after injury. Collectively, we demonstrate that EGR2 is an indispensable component of the transcriptional network controlling the identity and function of alveolar macrophages in health and disease.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce/imunologia , Macrófagos Alveolares/imunologia , Animais , Feminino , Humanos , Macrófagos Alveolares/patologia , Masculino , Camundongos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/imunologia
11.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822765

RESUMO

Limiting dysfunctional neutrophilic inflammation while preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative mass-spectrometry identified how inflammatory murine neutrophils regulated expression of cell surface receptors, signal transduction networks, and metabolic machinery to shape neutrophil phenotypes in response to hypoxia. Through the tracing of labeled amino acids into metabolic enzymes, proinflammatory mediators, and granule proteins, we demonstrated that ongoing protein synthesis shapes the neutrophil proteome. To maintain energy supplies in the tissues, neutrophils consumed extracellular proteins to fuel central carbon metabolism. The physiological stresses of hypoxia and hypoglycemia, characteristic of inflamed tissues, promoted this extracellular protein scavenging with activation of the lysosomal compartment, further driving exploitation of the protein-rich inflammatory milieu. This study provides a comprehensive map of neutrophil proteomes, analysis of which has led to the identification of active catabolic and anabolic pathways that enable neutrophils to sustain synthetic and effector functions in the tissues.


Assuntos
Carbono/metabolismo , Lisossomos/metabolismo , Neutrófilos/metabolismo , Biossíntese de Proteínas , Proteoma/metabolismo , Animais , Hipóxia Celular , Humanos , Camundongos
12.
Wellcome Open Res ; 6: 38, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997298

RESUMO

Background: Acute respiratory distress syndrome (ARDS) is a severe critical condition with a high mortality that is currently in focus given that it is associated with mortality caused by coronavirus disease 2019 (COVID-19). Neutrophils play a key role in the lung injury characteristic of non-COVID-19 ARDS and there is also accumulating evidence of neutrophil mediated lung injury in patients who succumb to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We undertook a functional proteomic and metabolomic survey of circulating neutrophil populations, comparing patients with COVID-19 ARDS and non-COVID-19 ARDS to understand the molecular basis of neutrophil dysregulation. Results: Expansion of the circulating neutrophil compartment and the presence of activated low and normal density mature and immature neutrophil populations occurs in ARDS, irrespective of cause. Release of neutrophil granule proteins, neutrophil activation of the clotting cascade and upregulation of the Mac-1 platelet binding complex with formation of neutrophil platelet aggregates is exaggerated in COVID-19 ARDS. Importantly, activation of components of the neutrophil type I interferon responses is seen in ARDS following infection with SARS-CoV-2, with associated rewiring of neutrophil metabolism, and the upregulation of antigen processing and presentation. Whilst dexamethasone treatment constricts the immature low density neutrophil population, it does not impact upon prothrombotic hyperinflammatory neutrophil signatures. Conclusions: Given the crucial role of neutrophils in ARDS and the evidence of a disordered myeloid response observed in COVID-19 patients, this work maps the molecular basis for neutrophil reprogramming in the distinct clinical entities of COVID-19 and non-COVID-19 ARDS.

13.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962944

RESUMO

Unbalanced immune responses to pathogens can be life-threatening although the underlying regulatory mechanisms remain unknown. Here, we show a hypoxia-inducible factor 1α-dependent microRNA (miR)-210 up-regulation in monocytes and macrophages upon pathogen interaction. MiR-210 knockout in the hematopoietic lineage or in monocytes/macrophages mitigated the symptoms of endotoxemia, bacteremia, sepsis, and parasitosis, limiting the cytokine storm, organ damage/dysfunction, pathogen spreading, and lethality. Similarly, pharmacologic miR-210 inhibition improved the survival of septic mice. Mechanistically, miR-210 induction in activated macrophages supported a switch toward a proinflammatory state by lessening mitochondria respiration in favor of glycolysis, partly achieved by downmodulating the iron-sulfur cluster assembly enzyme ISCU. In humans, augmented miR-210 levels in circulating monocytes correlated with the incidence of sepsis, while serum levels of monocyte/macrophage-derived miR-210 were associated with sepsis mortality. Together, our data identify miR-210 as a fine-tuning regulator of macrophage metabolism and inflammatory responses, suggesting miR-210-based therapeutic and diagnostic strategies.


Assuntos
MicroRNAs , Sepse , Animais , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Sepse/genética , Sepse/metabolismo
14.
Cell Metab ; 33(2): 411-423.e4, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33306983

RESUMO

Neutrophils can function and survive in injured and infected tissues, where oxygen and metabolic substrates are limited. Using radioactive flux assays and LC-MS tracing with U-13C glucose, glutamine, and pyruvate, we observe that neutrophils require the generation of intracellular glycogen stores by gluconeogenesis and glycogenesis for effective survival and bacterial killing. These metabolic adaptations are dynamic, with net increases in glycogen stores observed following LPS challenge or altitude-induced hypoxia. Neutrophils from patients with chronic obstructive pulmonary disease have reduced glycogen cycling, resulting in impaired function. Metabolic specialization of neutrophils may therefore underpin disease pathology and allow selective therapeutic targeting.


Assuntos
Glucose/imunologia , Neutrófilos/imunologia , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Gluconeogênese , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
15.
J Clin Invest ; 130(6): 3221-3237, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191647

RESUMO

Neutrophilic inflammation is central to disease pathogenesis, for example, in chronic obstructive pulmonary disease, yet the mechanisms that retain neutrophils within tissues remain poorly understood. With emerging evidence that axon guidance factors can regulate myeloid recruitment and that neutrophils can regulate expression of a class 3 semaphorin, SEMA3F, we investigated the role of SEMA3F in inflammatory cell retention within inflamed tissues. We observed that neutrophils upregulate SEMA3F in response to proinflammatory mediators and following neutrophil recruitment to the inflamed lung. In both zebrafish tail injury and murine acute lung injury models of neutrophilic inflammation, overexpression of SEMA3F delayed inflammation resolution with slower neutrophil migratory speeds and retention of neutrophils within the tissues. Conversely, constitutive loss of sema3f accelerated egress of neutrophils from the tail injury site in fish, whereas neutrophil-specific deletion of Sema3f in mice resulted in more rapid neutrophil transit through the airways, and significantly reduced time to resolution of the neutrophilic response. Study of filamentous-actin (F-actin) subsequently showed that SEMA3F-mediated retention is associated with F-actin disassembly. In conclusion, SEMA3F signaling actively regulates neutrophil retention within the injured tissues with consequences for neutrophil clearance and inflammation resolution.


Assuntos
Movimento Celular/imunologia , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Neutrófilos/patologia , Regulação para Cima/imunologia
16.
Wellcome Open Res ; 2: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387803

RESUMO

Background: Pseudomonas species are adapted to evade innate immune responses and can persist at sites of relative tissue hypoxia, including the mucus-plugged airways of patients with cystic fibrosis and bronchiectasis.  The ability of these bacteria to directly sense and respond to changes in local oxygen availability is in part consequent upon expression of the 2-oxoglutarate oxygenase, Pseudomonas prolyl hydroxylase (PPHD), which acts on elongation factor Tu (EF-Tu), and is homologous with the human hypoxia inducible factor (HIF) prolyl hydroxylases. We report that PPHD expression regulates the neutrophil response to acute pseudomonal infection. Methods:In vitro co-culture experiments were performed with human neutrophils and PPHD-deficient and wild-type bacteria and supernatants, with viable neutrophil counts determined by flow cytometry. In vivo consequences of infection with PPHD deficient P. aeruginosa were determined in an acute pneumonia mouse model following intra-tracheal challenge. Results: Supernatants of PPHD-deficient bacterial cultures contained higher concentrations of the phenazine exotoxin pyocyanin and induced greater acceleration of neutrophil apoptosis than wild-type PAO1 supernatants in vitro.  In vivo infection with PPHD mutants compared to wild-type PAO1 controls resulted in increased levels of neutrophil apoptosis and impaired control of infection, with higher numbers of P. aeruginosa recovered from the lungs of mice infected with the PPHD-deficient strain.  This resulted in an overall increase in mortality in mice infected with the PPHD-deficient strain. Conclusions: Our data show that Pseudomonas expression of its prolyl hydroxylase influences the outcome of host-pathogen interactions in vitro and in vivo, demonstrating the importance of considering how both host and pathogen adaptations to hypoxia together define outcomes of infection. Given that inhibitors for the HIF prolyl hydroxylases are in late stage trials for the treatment of anaemia and that the active sites of PPHD and human HIF prolyl hydroxylases are closely related, the results are of current clinical interest.

17.
J Clin Invest ; 127(9): 3407-3420, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28805660

RESUMO

Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.


Assuntos
Glicogênio/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neutrófilos/citologia , Infecções Pneumocócicas/imunologia , Doença Aguda , Animais , Lavagem Broncoalveolar , Colite/metabolismo , Glicólise , Humanos , Imunidade Inata , Inflamação , Leucócitos/citologia , Lesão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais
19.
Science ; 370(6513): 166-167, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33033202
20.
Arch Immunol Ther Exp (Warsz) ; 63(3): 161-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25527135

RESUMO

In recent years, several distinct innate lymphoid cell populations (ILC) have been characterized in mice and humans. Group 2 ILC function as a rapid responder population in type 2 immune responses. Thus, a wealth of data has implicated an important role for ILC2 in immunity to parasitic infection and in immune pathology in inflammatory and allergic responses. In this review, we describe recent progress in our understanding of the development and ontogeny of ILC2 populations and the mechanisms by which these cells function in a variety of infection and disease settings. Finally, we emphasize recent findings indicating functional interactions between these innate cells and their adaptive CD4(+) Th2 cell counterparts.


Assuntos
Hipersensibilidade/imunologia , Imunidade Inata , Inflamação/imunologia , Linfócitos/imunologia , Doenças Parasitárias/imunologia , Células Th2/imunologia , Imunidade Adaptativa , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa