Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(18): 28037-28053, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34614943

RESUMO

In this paper, a new architecture comprising silicon nanoparticles inside a hole transport layer laid on a thin silicon layer is proposed to develop ultrathin film solar cells. Using generalized Mie theory, a fast analytical approach is developed to evaluate the optical absorption of the proposed structure for various geometries, polarizations and angles of incidence. The analytical results are verified through comparison with full-wave simulations, illustrating a reasonable agreement. The electrical performance of a distributed silicon nanoparticle solar cell is determined for selected configurations. To be able to predict the light-trapping in a solar cell comprising randomly distributed nanospheres, a new technique based on probability theory is developed and validated through comparison with the simulation results. Both analytical and numerical results show that the excited Mie resonant modes in the proposed structure lead to a significant enhancement in both absorption and the photo-generated current, in comparison to a conventional silicon solar cell with an equivalent volume of the active layer. In the case of random distributions, other advantages, including the simple fabrication process, indicate that the cell is a promising structure for ultrathin photovoltaics.

2.
Opt Express ; 25(20): 23619-23633, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041313

RESUMO

We theoretically investigate lasing due to stimulated Brillouin scattering in integrated ring resonators. We give analytic expressions and numerical calculations for the lasing threshold for rings in the presence of for both linear and nonlinear loss. We demonstrate the operation of the ring in the different regimes of amplification and lasing, and show how these regimes depend on the coupling to the ring and on the nonlinear parameters. In the case of nonlinear losses, we find that there can exist an upper threshold to the lasing regime where the losses are dominated by free-carrier absorption. We also find that nonlinear losses can inhibit Brillouin lasing entirely for certain ranges of coupling parameters, and we show how the correct ranges of coupling parameters can be calculated and optimized for the design of integrated Brillouin lasers.

3.
Opt Express ; 24(5): 4786-4800, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092307

RESUMO

We study slot waveguide geometries, comprising a combination of soft glasses and high-index guiding structures, for enhancing stimulated Brillouin scattering (SBS). We show that strong optical and acoustic mode confinement in these waveguides can lead to a substantial increase in SBS gain, comparable to or greater than recently proposed suspended silicon nanowire structures. We compute the optimal parameters of the structure and examine the physics of optical and acoustic confinement within slot waveguides. Finally, we compute the effects of linear and nonlinear loss mechanisms on optimum pump/Stokes powers and waveguide lengths.

4.
Sci Rep ; 12(1): 13259, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918504

RESUMO

We investigate the concept of nanoparticle-based solar cells composed of a silicon nanoparticle stack as a light trapping absorber for ultrathin photovoltaics. We study the potential of using these inherently nanotextured structures in enhancing the light absorption. For this, a detailed optical analysis is performed on dependency of the cell response to parameters such as the number of particle layers, lattice structure and angle of incidence; Optical response of these cells are then compared with the results in conventional silicon solar cells. Moreover, we propose various configurations to apply these submicron particles as a p-n junction solar cell. We also compute the electrical performance of selected configurations. In doing so, key issues including the effect of contact points between nanoparticles and impact of loss are addressed. In the end, we show how [Formula: see text] nanoparticles on top of the cell structure can enhance the photocurrent. The appropriate range of [Formula: see text] particle size is also obtained for the typical cell structures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa