Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 72(2): 161-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296558

RESUMO

YM-1, an allosteric modulator of heat-shock 70 kDa protein (Hsp70), inhibits cancer cell growth, but the mechanism is not yet fully understood. Here, we show that YM-1 induces the degradation of bromodomain containing 4 (BRD4), which mediates oncogene expression. Overall, our results indicate that YM-1 promotes the binding of HSP70 to BRD4, and this in turn promotes the ubiquitination of BRD4 by C-terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase working in concert with Hsp70, leading to proteasomal degradation of BRD4. This YM-1-induced decrease of BRD4 would contribute at least in part to the inhibition of cancer cell growth.


Assuntos
Doxorrubicina/análogos & derivados , Proteínas de Choque Térmico , Proteínas Nucleares , Proteínas de Choque Térmico/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ligação Proteica
2.
ACS Med Chem Lett ; 13(3): 396-402, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35300080

RESUMO

The onset of neurodegenerative disorders (NDs), such as Alzheimer's disease, is associated with the accumulation of aggregates of misfolded proteins. We previously showed that chemical knockdown of ND-related aggregation-prone proteins can be achieved by proteolysis targeting chimeras (PROTACs). However, hetero-bifunctional PROTACs generally show poor permeability into the central nervous system, where NDs are located. Here, we document the conversion of one of our PROTACs into hydrophobic tags (HyTs), another class of degraders bearing hydrophobic degrons. This conversion decreases the molecular weight and the number of hydrogen bond donors/acceptors. All the developed HyTs lowered the level of mutant huntingtin, an aggregation-prone protein, with potency comparable to that of the parent PROTAC. Through IAM chromatography analysis and in vivo brain penetration assay of the HyTs, we discovered a brain-permeable HyT. Our results and mechanistic analysis indicate that conversion of protein degraders into HyTs could be a useful approach to improve their drug-like properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa