Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Environ Monit Assess ; 195(12): 1436, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940796

RESUMO

Soil microbes are microscopic organisms that inhabit the soil and play a significant role in various ecological processes. They are essential for nutrient cycling, carbon sequestration, and maintaining soil health. Importantly, soil microbes have the potential to sequester carbon dioxide (CO2) from the atmosphere through processes like carbon fixation and storage in organic matter. Unlocking the potential of microbial-driven carbon storage holds the key to revolutionizing climate-smart agricultural practices, paving the way for sustainable productivity and environmental conservation. A fascinating tale of nature's unsung heroes is revealed by delving into the realm of soil microbes. The guardians of the Earth are these tiny creatures that live beneath our feet and discreetly work their magic to fend off the effects of climate change. These microbes are also essential for plant growth enhancement through their roles in nutrient uptake, nitrogen fixation, and synthesis of growth-promoting chemicals. By understanding and managing soil microbial communities, it is possible to improve soil health, soil water-holding capacity, and promote plant growth in agricultural and natural ecosystems. Added to it, these microbes play an important role in biodegradation, bioremediation of heavy metals, and phytoremediation, which in turn helps in treating the contaminated soils. Unfortunately, climate change events affect the diversity, composition, and metabolism of these microbes. Unlocking the microbial potential demands an interdisciplinary endeavor spanning microbiology, ecology, agronomy, and climate science. It is a call to arms for the scientific community to recognize soil microbes as invaluable partners in the fight against climate change. By implementing data-driven land management strategies and pioneering interventions, we possess the means to harness their capabilities, paving the way for climate mitigation, sustainable agriculture, and promote ecosystem resilience in the imminent future.


Assuntos
Ecossistema , Solo , Solo/química , Mudança Climática , Microbiologia do Solo , Monitoramento Ambiental
2.
Environ Res ; 215(Pt 2): 114287, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087774

RESUMO

Peanut shell biomass was selected and utilized to produce biochar through pyrolysis under N2 atmosphere at 923 K. After studying various effects of experimental parameters and by statistical modeling and optimization by RSM using Box-Benken design, optimized conditions of pH 2.0 ± 0.1, temperature 303 K, and adsorbent dose used of 2.5 g L-1 were obtained giving almost 99.99% removal for Cr(VI) from the solution. FESEM, FTIR, XRD, XPS, EDX, elemental mapping, and pHzpc were used for the evaluation of the surface characteristics of peanut shell biochar (PSB). Studies revealed C-O, C-H, CO, and O-H functional groups' presence with the help of FTIR, majorly in control of adsorption mechanism and the EDX confirmed the presence of Cr(VI) onto peanut shell biochar (PSB). Further adsorption mechanism for Cr(VI) adsorption followed the pseudo-second-order rate with adsorption capacity of 29.38 mg g-1 given by the Langmuir isotherm. The thermodynamic study confirmed the exothermic and spontaneous nature of the process for Cr(VI) adsorption onto PSB. The adsorption mechanism showed electrostatic attraction, reduction, and complexation mainly responsible for Cr(VI) adsorption by PSB. Thus, PSB effectively removes Cr(VI) is confirmed by the present study.


Assuntos
Arachis , Poluentes Químicos da Água , Carvão Vegetal , Cromo , Água
3.
Int J Environ Sci Technol (Tehran) ; 17(10): 4265-4280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421070

RESUMO

Hydrophobic polyvinylidene fluoride membrane was reformed to the hydrophilic membrane by incorporating synthesized titanium dioxide nanoparticles using Cajanus cajan seed extract. Spectroscopic and microscopic techniques characterized the composite membrane. The X-ray diffraction confirms the anatase phase of titanium dioxide nanoparticles of crystalline size 15.89 nm. The effect of titanium dioxide concentration on the thermodynamical and rheological properties on the polyvinylidene fluoride casting solution was investigated by the triangle phase diagram and viscosity measurement. It was concluded that titanium dioxide introduction caused thermodynamic enhancement, but the impact of rheological hinderance was higher at high concentrations. The polyvinylidene fluoride/titanium dioxide membranes were used as a bi-functional membrane to evaluate the rejection of chromium (VI) from wastewater; then, they were applied as sunlight-active catalyst membrane to reduce the concentrated chromium (VI) to chromium (III) by reduction. It was concluded that at 0.02 wt% of titanium dioxide, the maximum rejection of 85.59% and a% reduction of 92% was achieved with enhanced flux.

4.
Neural Comput ; 31(10): 1915-1944, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31393827

RESUMO

In this letter, we propose two novel methods for four-class motor imagery (MI) classification using electroencephalography (EEG). Also, we developed a real-time health 4.0 (H4.0) architecture for brain-controlled internet of things (IoT) enabled environments (BCE), which uses the classified MI task to assist disabled persons in controlling IoT-enabled environments such as lighting and heating, ventilation, and air-conditioning (HVAC). The first method for classification involves a simple and low-complex classification framework using a combination of regularized Riemannian mean (RRM) and linear SVM. Although this method performs better compared to state-of-the-art techniques, it still suffers from a nonnegligible misclassification rate. Hence, to overcome this, the second method offers a persistent decision engine (PDE) for the MI classification, which improves classification accuracy (CA) significantly. The proposed methods are validated using an in-house recorded four-class MI data set (data set I, collected over 14 subjects), and a four-class MI data set 2a of BCI competition IV (data set II, collected over 9 subjects). The proposed RRM architecture obtained average CAs of 74.30% and 67.60% when validated using datasets I and II, respectively. When analyzed along with the proposed PDE classification framework, an average CA of 92.25% on 12 subjects of data set I and 82.54% on 7 subjects of data set II is obtained. The results show that the PDE algorithm is more reliable for the classification of four-class MI and is also feasible for BCE applications. The proposed low-complex BCE architecture is implemented in real time using Raspberry Pi 3 Model B+ along with the Virgo EEG data acquisition system. The hardware implementation results show that the proposed system architecture is well suited for body-wearable devices in the scenario of Health 4.0. We strongly feel that this study can aid in driving the future scope of BCE research.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Internet das Coisas , Aprendizado de Máquina , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Adulto Jovem
5.
Biochemistry (Mosc) ; 84(5): 453-463, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31234761

RESUMO

Amino acids undergo many covalent modifications, but only few amino acid repair enzymes have been identified. Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), also known as L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (PCMT), methylates covalently modified isoaspartate (isoAsp) residues accumulated in proteins via Asn deamidation and Asp hydrolysis. This cytoplasmic reaction occurs through the formation of succinimide cyclical intermediate and generates either isoAsp or Asp from succinimide. Succinimide conversion into Asp is spontaneous, while isoAsp is restored by PIMT using S-adenosylmethionine as a methyl donor. PIMT transforms isoAsp into succinimide, thereby creating an opportunity for the later to be converted into Asp. Apart from normal cell physiology, formation of isoAsp in proteins is promoted by various stress conditions. The resulting isoAsp can form a kink or bend in the protein backbone thus making the protein conformationally and functionally distorted. Many PIMT-interacting proteins (proteins with isoAsp residues) have been reported in eukaryotes, but only few of them have been found in prokaryotes. Extensive studies in mice have shown the importance of PIMT in neurodegeneration. Detail elucidation of PIMT function can create a platform for addressing various disorders such as Alzheimer's disease and cancer.


Assuntos
Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Animais , Ácido Aspártico/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Ácido Isoaspártico/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Estrutura Quaternária de Proteína , S-Adenosilmetionina/metabolismo
6.
Pestic Biochem Physiol ; 158: 166-174, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378353

RESUMO

Pesticidal properties of Bacillus thuringiensis and its associated toxic proteins is an ever-growing science with potential implications in biological pest management. In the present study 80 Bacillus thuringiensis isolates native to Uttarakhand Himalayas were evaluated for chitinolytic activity and potent ones (11 isolates) were further subjected to multiphasic characterization for their antifungal, insecticidal and synergistic properties with selected chemical insecticides. Although all the 11 potent isolates were biologically active, only three isolates (VLBt27, VLBt109 and VLBt238) showed >90% inhibition in radial growth of 3 out of 4 tested plant pathogenic fungi (Rhizoctonia solani, Fusarium oxysporum, Alternaria pori and Pyricularia oryzae). The key antagonism was manifested in the form of disruptions in growing tips and uneven mycelial thickenings. In insect bioassays (against Helicoverpa armigera, Mythimna separata and Thysanoplusia orichalcea), no considerable direct mortality was observed. However, the larval weight reduction was prominent in four isolates (VLBt27, VLBt38, VLBt109 and VLBt135) which accounts to >75% in first instar larvae of H. armigera. Joint action of these four isolates with chemical insecticides showed an overall additive interaction against Brevicoryne brassicae and synergism against H. armigera. All the isolates were compatible with tested insecticides at their field recommended doses except for chlorpyriphos with around 130 kDa protein as chitinase. The study identified VLBt27 and VLBt109, two native isolates of B. thuringiensis with potential antagonistic activity and synergism as well. These isolates have possible implications as single strategy against two diverse pest problems (pathogenic fungi and phytophagous insect) of agriculture with a view of reduced pesticide application.


Assuntos
Bacillus thuringiensis/fisiologia , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Animais , Quitinases/metabolismo , Controle Biológico de Vetores
7.
Mol Biotechnol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195817

RESUMO

Solid waste generation is a huge contributor to environmental pollution issues, and food wastes are prominent in this category due to their large generation on a day-to-day basis. Thus, the settlement of daily food waste is one of the major constraints and needs innovative manufacturing sheme to valorize solid waste in sustainable manner. Moreover, these food wastes are rich in organic content, which has promising scope for their value-added products. In the present study, raw mango seed waste has been biotransformed to produce bacterial hydrolytic enzymes as feedstock. On investigating the impact of substrate, the highest bacterial cellulase production was recorded to be 18 IU/gds FP (filter paper) in 24 h of microbial incubation at 5 g of substrate in solid-state fermentation (SSF). Furthermore, at 40 °C and pH 6.0, 23 IU/gds FP enzyme could be produced in 24 h of SSF. Beside this, on comparing the influence of inorganic and organic nitrogen sources, urea has been found to provide better cellulase production, which yielded 28 IU/gds FP in 24 h of incubation, along with 77 IU/gds BG (ß-glucosidase) and 89 IU/gds EG (endoglucanase). On the other hand, Tween-40 and Tween-80, two different surfactants, were employed at a 1.0% concentration for 24 h of incubation. It was noticed that Tween-80 showed complete enzyme activity at 24 h, which was found to be relatively superior to that of Tween-40. This study may have potential utility in enzyme production using mango seed as a food waste for various industrial applications.

8.
Bioresour Technol ; 369: 128219, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36343777

RESUMO

Microbial cellulases are the enzymes used in numerous industrial biotechnological applications. Efficiency of celluloytic cocktails plays a key role in the conversion of biomass into biofuels, but limited production, high cost and low efficiency are the main obstacles to sustainable biorefining. The current work aims to establish a feasible approach for boosting the production of fungal endoglucanse (EG) and its functional stability utilizing nanocomposite materials based on manganese oxide. Herein, aqueous extract from mixed fruit waste was used to synthesize the nanocomposite sample, which was subsequently subjected to several characterization techniques for analysis. Following the solid-state fermentation of paddy straw, and by employing 75 mg nanocomposite, 192 IU/gds EG was produced under the optimal conditions, while 19 IU/gds FP and 98 IU/gds BGL production were recorded. The crude EG enzyme treated with nanocomposite also shows complete stability at pH 5.0 for 3.5 h while retaining thermal activity at 70 °C for 4 h.


Assuntos
Celulases , Frutas , Porosidade , Óxidos , Fermentação
9.
Bioresour Technol ; 376: 128847, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898558

RESUMO

Due to the limited availability of fossil fuels, pollution causing serious environmental issues, and their continuously rising price, the development of low-cost efficient enzymes and their implementation in biomass-based bioenergy industries are highly demanded. In the present work, phytogenic fabrication of copper oxide based nanocatalyst has been performed using moringa leaves and has been characterized using different techniques. Herein, the impact of different dosages of as-prepared nanocatalyst on fungal co-cultured cellulolytic enzyme production under co-substrate fermentation using wheat straw and sugarcane bagasse in 4:2 ratios in solid state fermentation (SSF) has been investigated. An optimal concentration of 25 ppm of nanocatalyst influenced the production of 32 IU/gds of enzyme, which showed thermal stability at 70 °C for 15 h. Additionally, enzymatic bioconversion of rice husk at 70 °C librated 41 g/L of total reducing sugars, which led to the production of 2390 mL/L of cumulative H2 in 120 h.


Assuntos
Moringa oleifera , Saccharum , Celulose/metabolismo , Moringa oleifera/metabolismo , Cobre , Saccharum/metabolismo , Fermentação , Óxidos
10.
Bioresour Technol ; 386: 129491, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37463616

RESUMO

The present investigation is targeted towards the facile fabrication of a carbon-based nanocatalyst (CNCs) using Kans grass biomass (KGB) and its sustainable application in microbial cellulase enhancement for the alleviation of enzymatic hydrolysis for sugar production. Different pretreatments, including physical, KGB extract-mediated treatment, followed by KOH pretreatment, have been applied to produce CNCs using KGB. The presence of CNCs influences the pretreatment of KGB substrate, fungal cellulase production, stability, and sugar recovery in the enzymatic hydrolysis of KGB. Using 1.0% CNCs pretreated KGB-based solid-state fermentation, 33 U/gds FPA and 126 U/gds BGL were obtained at 72 h, followed by 107 U/gds EG at 48 h in the presence of 0.5% CNCs. Further, 42 °C has been identified as the optimum temperature for cellulase production, while the enzyme showed thermal stability at 50 °C up to 20 h and produced 38.4 g/L sugar in 24 h through enzymatic hydrolysis of KGB.


Assuntos
Celulase , Poaceae , Poaceae/metabolismo , Açúcares , Carboidratos , Celulase/metabolismo , Temperatura , Hidrólise , Fermentação , Biomassa
11.
Int J Biol Macromol ; 252: 126376, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595712

RESUMO

The economic production of cellulase enzymes for various industrial applications is one of the major research areas. A number of broad industrial applications, for example, in cellulosic biomass hydrolysis for simple sugars such as glucose and subsequent biofuel production, make these enzyme systems the third most demanding enzymes. Nevertheless, due to their production on commercial substrates, cellulases fall into the category of costly enzymes. Therefore, the goal of the present work is to evaluate the enhancement of cellulase production and its utilization in the enzymatic hydrolysis of biomass using low-cost cellulosic substrate, which is abundant and widely available. In this context, waste biomasses of water hyacinth (WH), including leaves and stems, have been used as feedstock to produce cellulases via solid-state fermentation (SSF) in the current study, which improves its production as well as activity. Furthermore, the impact of process parameters like temperature and pH has been investigated for improved cellulase production. At optimum concentration using 10 g of feedstock, 22 IU/gds of FP, 92 IU/gds of BGL, and 111 IU/gds of EG have been noticed in day 5 of SSF. Herein, 40 °C has been identified as the optimum temperature for cellulase production, whereas 50-55 °C has been recorded as the optimum reaction temperature for cellulase enzyme activity. Additionally, pH 5.5 has been identified as the optimum pH for cellulase enzyme production, whereas this enzyme was thermally stable (55 °C) at pH 5.0 up to 3.5 h. Further, the cellulosic biomass hydrolysis of WH leaves via an optimized crude enzyme has been performed, and this could release 24.34 g/L of glucose in 24 h of the reaction. The current findings may have potential for developing cellulases for mass-scale production using WH-based waste bioresources for numerous biorefinery applications.


Assuntos
Celulase , Celulases , Eichhornia , Celulases/metabolismo , Celulose/metabolismo , Celulase/metabolismo , Glucose , Fermentação , Hidrólise
12.
Int J Biol Macromol ; 252: 126377, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595725

RESUMO

One of the most important properties of cellulolytic enzyme is its ability to convert cellulosic polymer into monomeric fermentable sugars which are carbohydrate by nature can efficiently convert into biofuels. However, higher production costs of these enzymes with moderate activity-based stability are the main obstacles to making cellulase-based applications sustainably viable, and this has necessitated rigorous research for the economical availability of this process. Using water hyacinth (WH) waste leaves as the substrate for cellulase production under solid state fermentation (SSF) while treating the fermentation production medium with CuO (cupric oxide oxide) bionanocatalyst have been examined as ways to make fungal cellulase production economically feasible. Herein, a sustainable green synthesis of CuO bionanocatalyst has been performed by using waste leaves of WH. Through XRD, FT-IR, SEM, and TEM analysis, the prepared CuO bionanocatalyst's physicochemical properties have been evaluated. Furthermore, the effect of CuO bionanocatalyst on the temperature stability of raw cellulases was observed, and its half-life stability was found to be up to 9 h at 65 °C. The results presented in the current investigation may have broad scope for mass trials for various industrial applications, such as cellulosic biomass conversion.


Assuntos
Celulase , Eichhornia , Celulose/metabolismo , Celulase/química , Fermentação , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Mol Biotechnol ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442920

RESUMO

Solid wastes are the major contributors in global environmental pollution and their management is the need of urgency towards development of sustainable world. In the present work, solid waste of potato peels has been used as feedstock for fermentation of bacterial cellulase production and substrate for enzymatic hydrolysis via this enzymes cocktail. Additionally, liquid extracts of pea pod and root of water hyacinth wastes have been used to complete nutritional requirements and moisture balance in SSF process during the course of enzyme production. At optimum feedstock concentration of 6.0 g PPW and 10:40 extract-based moisture ratio of WHR and Ppw, Bacillus sp. produced 15 U/gds FP in 18 h, whereas maximum 36 U/gds BGL and 42 U/gds EG have been recorded in 24 h of SSF. Temperature 35 °C and pH 5.5 were optimum for enzyme production while the produced enzyme was thermally stable upto 30 h at 35 °C with 100% pH stability upto 14 h and 77% relative activity at 34 h. The optimized bacterial enzymes have been used for bioconversion of PPW biomass and 26 g/L glucose has been recorded at a hydrolytic temperature of 50 °C and pH 5.0. The study may have feasible promising scope in cellulosic biorefineries and waste management.

14.
Mol Biotechnol ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561276

RESUMO

Banana peel waste is one of the major contributors in the issue raised from solid waste, however, it can be valorized effectively due to high content of cellulose and hemicellulose. Significant conversion of banana waste includes cellulolytic enzymes and bioenergy production. In the present study, bacterial cellulase was produced using raw banana peel and ripe banana peel under SSF. Additionally, impact of acid pretreatment was investigated as one of strategy to improve cellulolytic enzyme production. A comparative evaluation of raw and ripe banana peels showed that ripe banana peels showed better enzyme production after pretreatment with 0.5% dilute HCl acid. In the series of enhancement of the enzyme production, temperature and pH of the SSF medium were also investigated, and found temperature 35 °C and pH 6.0 were optimum to produce maximum 3.5-U/ml FPA, 39-U/ml BGL, and 54-U/ml EG in 18-h SSF incubation. The study presented eco-friendly waste management to produce industrial enzyme for its promising application in waste valorization and biorefinery area.

16.
Environ Monit Assess ; 184(6): 3427-41, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21701887

RESUMO

Dust from haul and transport roads are the major source of air pollution in opencast coal mining areas. Dust generated during mining operations pollutes air which causes different health problems. Various available techniques are implemented in the field to minimize and control dust in mining areas. However, they are not very effective because dust deposited on road surfaces are not removed by these techniques. For effective control of dust in opencast mining areas, it has to be regularly collected from road surfaces and may be converted into solid form, and subsequently can be used as a domestic fuel considering its physicochemical properties. The present paper describes a comparative study of qualitative and quantitative aspects of road dust samples of four coalfields of India. The pH of the dust was found to be in the range of 5.1-7.7. Moisture, ash, volatile matter, fixed carbon, water-holding capacity, bulk density, and specific gravity of dust samples were found to be in the range of 0.5-3.0%, 45-76%, 12.6-20.0%, 10.2-45.3%, 21.17-31.71%, 1.15-1.70, and 1.73-2.30 g cm(-3), respectively. Observing the overall generation and characteristics of coal dust, it is suggested that coal dust from haul and transport roads of mining areas can be effectively collected and used as domestic fuel.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Poluição do Ar/estatística & dados numéricos , Minas de Carvão/métodos , Minas de Carvão/estatística & dados numéricos , Monitoramento Ambiental , Índia , Veículos Automotores/estatística & dados numéricos
17.
Med Biol Eng Comput ; 60(4): 1075-1098, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35224676

RESUMO

In this article, a hybrid model is developed based on multi-scale concept for solid  tumour cell invasion into a healthy tissue. Our aim is to study the tumour heterogeneity due to the geometry of a growing tumour caused by the phenotypic transformations of cells. In this context, an early vascular growth is considered after angiogenesis. Hence, the microenvironment of the solid tumour is rich of oxygen and nutrients. It is also considered that epidermal growth factor (EGF) is distributed into the surrounding extracellular matrix (ECM) of the tumour. The developed multi-layered model consists of three layers: intracellular or subcellular, cellular, and extracellular or tissue layer. The model integrates the events that occur simultaneously in these three layers to identify the underlying diversity. Here, every cell is represented as an agent. Characteristics of an agent are controlled by its intracellular protein expressions and its surrounding microenvironment. A mature proliferative or migratory or hybrid cell agent spawn two indistinguishable children unless it may convert into other phenotype due to influence of the microenvironment. Further, a simple cell cycle model is adapted which is influenced by EGF-EGFR signalling pathway and the external oxygen and nutrients. Moreover, migratory and hybrid cells secrete several matrix degrading enzymes (MDEs) which remodel the ECM for tumour invasion locally. Several biomechanical forces are considered that simultaneously act on the cancer cells. The outcome of the model is very similar to the results reported in earlier studies. The model shows the characteristics of cancer invasion that include sustainable proliferation by ignoring growth suppressor signals and reproduction of cancer cells at abnormal proportion, restrict apoptosis, and invade into the surrounding tissue. As the simulation parameters get modified due to different biochemical and biophysical processes, the robustness of the model is determined. It is found that only a number of proliferative cells are moderately sensitive to the parameters and others are less-sensitive.


Assuntos
Neoplasias , Microambiente Tumoral , Simulação por Computador , Matriz Extracelular/metabolismo , Humanos , Modelos Biológicos , Invasividade Neoplásica/patologia , Neoplasias/patologia
18.
ACS Omega ; 7(32): 28052-28064, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990475

RESUMO

The finite nature, regional availability, and environmental problems associated with the use of fossil fuels have forced all countries of the world to look for renewable eco-friendly alternatives. Agricultural waste biomasses, generated through the cultivation of cereal and noncereal crops, are being considered renewable and viable alternatives to fossil fuels. In view of this, there has been a global spurt in research efforts for using abundantly available agricultural wastes as feedstocks for obtaining energy and value-added products through biochemical and thermal conversion routes. In the present work, the thermochemical characteristics and thermal degradation behavior of sugarcane leaves (SCL) and tops were studied. The batch pyrolysis was carried out in a fixed-bed tubular reactor to obtain biochar, bio-oil, and pyrolytic gas. Effects of bed height (4-16 cm), particle size (0.180-0.710 mm), heating rate (15-30 °C/min), and temperature (350-650 °C) were investigated. The maximum yields of bio-oil (44.7%), biogas (36.67%), and biochar (36.82%) were obtained at 550, 650, and 350 °C, respectively, for a 16 cm deep bed of particles of size 0.18-0.30 mm at the heating rate of 25 °C/min. The composition of bio-oil was analyzed using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and gas chromatography-mass spectrometry (GC-MS) techniques. Several aliphatic, aromatic, phenolic, ketonic, and other acidic compounds were found in the bio-oil. The biochar had a highly porous structure and several micronutrients, making it useful as a soil conditioner. In the middle temperature ranges, biogas had more methane and CO and less hydrogen, but at higher temperatures, hydrogen was predominant.

19.
Bioresour Technol ; 362: 127671, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914674

RESUMO

Biogas-based circular bioeconomy can provide a long-term way out of the organic fraction of municipal solid waste. The barriers to biogas production are obstructing the growth of the biogas-based circular bioeconomy. This study provides a comprehensive analysis of the barriers to biogas in developing countries for the wider implementation of biogastechnology. Twenty barriers are identified and categorized into technical, logistical, institutional, and social dimensions. The analytical hierarchy process is applied to rank the barriers. The result of barrier ranking shows that the lack of appropriate segregation facilities is the most crucial barrier, followed by waste characteristics variation, and inconsistent supply. This study will provide an outline for rational decision-making in the sustainable organic fraction of municipal waste management.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Biocombustíveis/análise , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos
20.
Bioresour Technol ; 345: 126560, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34915113

RESUMO

Economic biowaste to biofuels production technology suffers from issues including high production cost of cellulase enzyme and its low efficiency. In this study five lignocellulosic biomass based on their high cellulosic contents are employed in 1:1 ratio with mixed fungal consortia to achieve enhance cellulase production via solid state fermentation. Under the optimum condition total 41 IU/gds FP activity was achieved in 120 h at 40 °C and pH 6.0. Further, crude cellulase was evaluated to improve thermal and pH stability under the influence of 2.0 mg/L NiFe2O4 nanoparticles, showed stability at 70 °C and pH 6.0 up to 8 h. Consequently, NiFe2O4 nanoparticles treated cellulase was used for the enzymatic hydrolysis of alkali treated wheat straw, and total 53 g/L reducing sugars could be produced in 18 h at 65 °C and pH 6.0. Thus, nanoparticles mediated enzymatic hydrolysis exhibited âˆ¼ 29% and âˆ¼ 28% higher sugar yield and productivity as compared to control after 18 h.


Assuntos
Celulase , Nanopartículas , Biomassa , Celulase/metabolismo , Fermentação , Hidrólise , Lignina , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa