Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 76(3): 357-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23889038

RESUMO

Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs γ-linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development.


Assuntos
Parede Celular/metabolismo , Lignina/metabolismo , Células Vegetais/metabolismo , Arabidopsis , Benzofuranos , Ácidos Cumáricos , Cumarínicos , Fluorescência , Fenilpropionatos/metabolismo , Pinus , Propionatos/metabolismo , Protoplastos/metabolismo , Plântula/metabolismo
2.
Plant Biotechnol J ; 11(3): 325-35, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23140549

RESUMO

Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies-lignin rewiring with APFL insertion-enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Parede Celular/metabolismo , Lignina/biossíntese , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biocombustíveis , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Feixe Vascular de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
3.
Plant Biotechnol J ; 10(5): 609-20, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22458713

RESUMO

Lignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers to reduce lignin polymerization degree (DP). Biosynthesis of these 'DP reducers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side-chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes so that plant stems expressing HCHL accumulate in their cell wall higher amounts of hydroxybenzaldehyde and hydroxybenzoate derivatives. Engineered plants with intermediate HCHL activity levels show no reduction in total lignin, sugar content or biomass yield compared with wild-type plants. However, cell wall characterization of extract-free stems by thioacidolysis and by 2D-NMR revealed an increased amount of unusual C6C1 lignin monomers most likely linked with lignin as end-groups. Moreover the analysis of lignin isolated from these plants using size-exclusion chromatography revealed a reduced molecular weight. Furthermore, these engineered lines show saccharification improvement of pretreated stem cell walls. Therefore, we conclude that enhancing the biosynthesis and incorporation of C6C1 monomers ('DP reducers') into lignin polymers represents a promising strategy to reduce lignin DP and to decrease cell wall recalcitrance to enzymatic hydrolysis.


Assuntos
Arabidopsis/metabolismo , Hidroliases/metabolismo , Lignina/biossíntese , Caules de Planta/metabolismo , Arabidopsis/genética , Biomassa , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroliases/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polimerização , Regiões Promotoras Genéticas , Transformação Genética
4.
J Vis Exp ; (87)2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24894795

RESUMO

Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40-50%), hemicellulose (25-30%), and lignin (20-30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.


Assuntos
Arabidopsis/ultraestrutura , Parede Celular/química , Coloração e Rotulagem/métodos
5.
Curr Opin Biotechnol ; 26: 189-98, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24607805

RESUMO

Lignin is one of the most abundant aromatic biopolymers and a major component of plant cell walls. It occurs via oxidative coupling of monolignols, which are synthesized from the phenylpropanoid pathway. Lignin is the primary material responsible for biomass recalcitrance, has almost no industrial utility, and cannot be simply removed from growing plants without causing serious developmental defects. Fortunately, recent studies report that lignin composition and distribution can be manipulated to a certain extent by using tissue-specific promoters to reduce its recalcitrance, change its biophysical properties, and increase its commercial value. Moreover, the emergence of novel synthetic biology tools to achieve biological control using genome bioediting technologies and tight regulation of transgene expression opens new doors for engineering. This review focuses on lignin bioengineering strategies and describes emerging technologies that could be used to generate tomorrow's bioenergy and biochemical crops.


Assuntos
Bioengenharia , Engenharia Genética , Lignina/metabolismo , Plantas/genética , Plantas/metabolismo , Biocombustíveis/provisão & distribuição , Biomassa , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica , Lignina/química , Lignina/genética , Especificidade de Órgãos , Fenilpropionatos/metabolismo , Plantas/química , Regiões Promotoras Genéticas/genética , Biologia Sintética/métodos , Transcrição Gênica , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa