Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Langmuir ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158092

RESUMO

We investigate the interfacial dynamics involved in the impact of a droplet on a liquid-liquid system, which involves the impingement of an immiscible core liquid drop from a vertical separation onto an interfacial shell liquid layer floating on a host liquid bath. The dynamics have been studied for a wide range of impact Weber numbers and two different interfacial shell liquids of varying volumes. The core drop, upon impact, dragged the interfacial liquid into the host liquid, forming an interfacial liquid column with an air cavity inside the host liquid bath. The dynamics is resolved into cavity expansion and rapid contraction, followed by thinning of the interfacial liquid. The interplay of viscous dissipation, interfacial pull, and core drop inertia influenced the necking dynamics. The viscous dissipation increases with the thickness of the interfacial layer, which depends on the volume and lateral spread over the water. The necking dynamics transitioned from inertia-dominated deep seal closure at higher spread, lower interfacial film volumes, and higher Weber numbers into inertia-capillary-dominated deep seal closure with an increase in film volumes, decrease in the spread of the interfacial fluid, or decrease in Weber number and finally into a no-seal closure at high volumes, low spread, and low Weber numbers.

2.
Langmuir ; 40(6): 3105-3116, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306611

RESUMO

The cloaking of the droplet and solid spheres by a thin ferrofluid layer forms a ferrofluid-wetting ridge, enabling the magnet-assisted directional manipulation of droplets and solid spheres on the magneto-responsive slippery surface. Understanding the interplay of various forces governing motion unravels the manipulation mechanism. The transportation characteristics of droplets and solid spheres on such surfaces enable their controlled manipulation in multiple applications. Here, we prepare magneto-responsive slippery surfaces by using superhydrophobic coatings on glass slides, creating a porous network and impregnating them with ferrofluid. Using a permanent magnet (and its translation) in the proximity of these surfaces, we manipulate the motion of liquid drops and solid spheres. Upon dispensing the droplet on the magneto-responsive slippery surface, the droplet is cloaked by a thin ferrofluid layer and forms a ferrofluid wetting ridge. Incorporating the magnetic field creates a magnetic-nanoparticle-rich zone surrounding the ferrofluid ridge. Thereafter, the motion of the magnet gives rise to the movement of the droplet. We found that the interplay of the magnetic force and viscous drag leads to the magnetic manipulation of droplets in a controlled fashion up to a certain magnet speed. Increasing the magnet speed further results in the uncontrolled motion of the droplet, where the droplet cannot follow the magnet trajectory. Moreover, we delineate multifunctional droplet manipulations, such as trapping, pendant droplet manipulation, coalescence, and microchemical reactions, which have wide engineering applications.

3.
Langmuir ; 40(13): 7168-7177, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498935

RESUMO

Sessile hydrogel drops on rigid surfaces exhibit a wetting/contact morphology intermediate between liquid drops and glass spheres. Using density functional theory, we reveal the contact forces acting between a hydrogel and a rigid glass surface. We show that while transitioning from liquid-like to solid-like hydrogels, there exists a critical hydrogel elasticity that enables a switch from attractive-to-repulsive interaction with the underlying rigid glass surface. Our theoretical model is validated by experimental observations of sessile polyacrylamide hydrogels of varying elasticity on glass surfaces. Further, the proposed model successfully approaches Young's law in the pure liquid limit and work of adhesion in the glassy limit. Lastly, we show a modified contact angle relation, taking into account the hydrogel elasticity to explain the features of a distinct hydrogel foot.

4.
Langmuir ; 40(36): 18968-18976, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252575

RESUMO

When a liquid drop makes initial contact with any surface, an unbalanced surface tension force drives the contact line, causing spreading. For Newtonian liquids, either liquid inertia or viscosity dictates these early regimes of spreading, albeit with different power-law behaviors of the evolution of the dynamic spreading radius. In this work, we investigate the early regimes of spreading for yield-stress liquids. We conducted spreading experiments with hydrogels and blood with varying degrees of yield stress. We observe that for yield-stress liquids, the early regime of spreading is primarily dictated by their high shear rate viscosity. For yield-stress liquids with low values of high shear rate viscosity, the spreading dynamics mimics that of Newtonian liquids like water, i.e., an inertia-capillary regime exhibited by a power-law evolution of spreading radius with exponent 1/2. With increasing high shear rate viscosity, we observe that a deceptively similar, although slower, power-law spreading regime is obeyed. The observed regime is in fact a viscous-capillary where viscous dissipation dominates over inertia. The present findings can provide valuable insights into how to efficiently control moving contact lines of biomaterial inks, which often exhibit yield-stress behavior and operate at high print speeds, to achieve desired print resolution.

5.
Soft Matter ; 20(16): 3425-3435, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38623617

RESUMO

Understanding the interactions of pathogenic droplets with surfaces is crucial to biomedical applications. In this study, using E. coli as the model microbe, we investigate the impact of a bacteria-laden droplet on different substrates, both bare and antimicrobial. In doing so, we unveil the significance of kinetic energy and spreading parameters of the impacting droplet in determining the microbes' proliferation capabilities. Our results indicate an inverse relationship between the impact Weber number and the bacterial ability to proliferate. We reveal that the mechanical stress generated during impact impedes the capabilities of microbes present inside the droplet to create their progeny. Following an order analysis of the mechanical stress generated, we argue that the impact does not induce lysis-driven cell death of the bacteria; rather, it promotes a stress-driven transition of viable bacteria to a viable-but-non-culturable (VBNC) state. Furthermore, variations in the concentration of particles on the antimicrobial surfaces revealed the role of the post-impact spreading behaviour in dictating bacterial proliferation capabilities. Contrary to the conventional notion, we demonstrate that during the early stages of interaction, a bare substrate may outperform an antibacterial substrate in the inactivation of the bacterial load. Finally, we present an interaction map illustrating the complex relationship between bacterial colony-forming units, bactericide concentration on the surface, and the impact Weber number. We believe that the inferences of the study, highlighting the effect of mechanical stresses on the soft cell wall of microbes, could be a useful design consideration for the development of antimicrobial surfaces.


Assuntos
Escherichia coli , Propriedades de Superfície , Escherichia coli/fisiologia , Escherichia coli/efeitos dos fármacos , Estresse Mecânico , Antibacterianos/farmacologia , Antibacterianos/química
6.
Soft Matter ; 20(28): 5516-5526, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38651874

RESUMO

Raindrops falling on window-panes spread upon contact, whereas hail can cause dents or scratches on the same glass window upon contact. While the former phenomenon resembles classical wetting, the latter is dictated by contact and adhesion theories. The classical Young-Dupre law applies to the wetting of pure liquids on rigid solids, whereas conventional contact mechanics theories account for rigid-on-soft or soft-on-rigid contacts with small deformations in the elastic limit. However, the crossover between adhesion and wetting is yet to be fully resolved. The key lies in the study of soft-on-soft interactions with material properties intermediate between liquids and solids. In this work, we translate adhesion to wetting by experimentally probing the static signature of hydrogels in contact with soft PDMS of varying elasticity of both the components. Consequently, we probe this transition across six orders of magnitude in terms of the characteristic elasto-adhesive parameter of the system. In doing so, we reveal previously unknown phenomenology and a theoretical model which smoothly bridges adhesion of glass spheres with total wetting of pure liquids on any given substrate.

7.
Phys Chem Chem Phys ; 26(15): 11311-11319, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38444318

RESUMO

Recently, 2D materials, such as graphene, have been successfully implemented as artificial conduits of molecular sizes. The extreme precision with which these structures can be fabricated provides an unprecedented framework for the development of highly specific and efficient devices. In this work, we study the electrophoretic transport of Cs+ ions in a graphene membrane with effective pore heights of 3.4 Å by conducting molecular dynamics simulations. The entrance of the pore is systematically modified to investigate the effect of pore geometry on ionic conductance. Simulation results suggest a significant correlation between ionic conductance and entrance geometry, with a variation of the conductance up to 100% across the studied cases. To explain the observed correlation, two mechanisms involving an intimate relationship between ion dehydration and edge functional groups are proposed. The present study provides theoretical insights that can aid the design of graphene-based membranes with tunable ionic transport properties.

8.
Langmuir ; 39(11): 4049-4059, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36893478

RESUMO

Controlling the impact process of a droplet impacting a liquid film has remained a wide-open challenge. The existing passive techniques lack precise on-demand control of the impact dynamics of droplets. The present study introduces a magnet-assisted approach to control water droplets' impact dynamics. We show that by incorporating a thin, magnetically active ferrofluid film, the overall droplet impact phenomena of the water droplets could be controlled. It is found that by modifying the distribution of the magnetic nanoparticles (MNPs) present inside the ferrofluid using a permanent magnet, the spreading and retraction behavior of the droplet could be significantly controlled. In addition to that, we also show that by altering the impact Weber number (Wei), and the magnetic Bond number (Bom), the outcomes of droplet impact could be precisely controlled. We reveal the role of the various forces on the consequential effects of droplet impact with the help of phase maps. Without the magnetic field, we discovered that the droplet impact on ferrofluid film results in no-splitting, jetting, and splashing regimes. On the other hand, the presence of magnetic field results in the no-splitting and jetting regime. However, beyond a critical magnetic field, the ferrofluid film gets transformed into an assembly of spikes. In such scenarios, the droplet impact only results in no-splitting and splashing regimes, while the jetting regime remains absent. The outcome of our study may find potential applications in chemical engineering, material synthesis, and three-dimensional (3D) printing where the control and optimization of the droplet impact process are desirable.

9.
Langmuir ; 38(31): 9660-9668, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876791

RESUMO

Interfacial migration of droplets in microfluidic confinements has significant relevance in cell biology and biochemical assays. So far, studies on passive interfacial migration of droplets are limited to co-flow interfaces having small interfacial tension (IFT ∼ 1 mN/m). Here, we elucidate the migration and spreading of droplets (SiO-1000, SiO-100, FC40, and castor oil as phase 3, P3) across the interface between a pair of coflowing streams (PEG as P1, SiO-100, SiO-20, FC40, and olive oil as P2) having large IFT (∼10 mN/m), with the three different phases immiscible. Interfacial migration involving interfaces of large IFT is facilitated by confining droplets between the channel wall and coflow interface. We find that contact between droplets and the coflow interface is governed by the confinement ratio (i.e., the ratio of drop size to stream width) and the ratio of the capillary numbers of the coflowing streams. Depending on the sign of the spreading parameter (S) of the co-flowing phases, droplet migration or spreading at the interface is observed. While interfacial migration is observed for S1 < 0 and S2 > 0, droplet spreading is observed for S1 < 0 and S2 < 0, where S1 and S2 are P1 and P2 side spreading parameters, respectively. We investigate the droplet migration dynamics and time evolution of the contact line and the interface. Our results show that the speed of interfacial migration increases with increasing spreading parameter contrast between the coflowing phases. In the droplet spreading case, we experimentally study the variation in the spreading length with time, revealing three distinct regimes in good agreement with predictions from analytical scaling. Our study explores the interfacial transport of droplets involving high IFT interfaces, advancing the fundamental understanding of the topic that may find relevance in droplet microfluidics.


Assuntos
Microfluídica , Microfluídica/métodos , Tensão Superficial
10.
Langmuir ; 38(25): 7750-7758, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35700423

RESUMO

A liquid drop resting on a soft solid deforms the surface at the three-phase contact line. The surface deformation, also called "wetting ridge", varies in size from nanoscales to microscales, depending on the elasticity and thickness of the soft layer. In this work, we probe how surface elasticity and coating thickness influences normal and tangential surface deformation profiles induced by a sessile liquid drop using dual-wavelength reflection interference contrast microscopy. Furthermore, we experimentally verify the appropriate characteristic length scale, which closely describes the ridge profiles on both thick and thin soft layers for two different surface elasticities.

11.
Langmuir ; 37(51): 14833-14845, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34904828

RESUMO

The liquid droplet spreads over a solid surface to minimize the surface energy when brought in direct contact with the surface. The spreading process is rapid in the early stages, tends to slow down during its progress, and has resulted in peculiarity due to the experimental difficulties in the accurate determination of the contact line radius. In the present numerical study, we found that drop spreading begins with a viscosity-dominated Stokes regime, where contact radius scales as r ∼ t for a wide range of drop liquid viscosities. Subsequent to the Stokes regime, the inertial regime is observed where contact radius scales as r ∼ t0.5 for low- to medium-viscous droplets, whereas for very high viscous drops, the spreading dynamics is completely dominated by the viscous regime. It is also found that the equilibrium wetting condition does not affect the power-law scaling for the contact radius of the drop. The amplitude of capillary waves induced across the interface of the drop is observed to be sufficiently high to cause necking and ejection of satellite drops from the main drop during its spreading for low-viscous liquids from complete wetting to partial wetting conditions. A regime plot between the Ohnesorge number and advancing contact angle of the substrate is presented to demarcate the regions of damped waves without pinch-off and drop spreading with satellite drops.

12.
Langmuir ; 37(49): 14292-14301, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34846896

RESUMO

Polydimethylsiloxane (PDMS) is an important viscoelastic material that finds applications in a large number of engineering systems, particularly lab-on-chip microfluidic devices built with a flexible substrate. Channels made of PDMS, used for transporting analytes, are integral to these applications. The PDMS viscoelastic nature can induce additional hydrodynamic contributions at the soft wall/fluid interface compared to rigid walls. In this research, we investigated the pressure drop within PDMS channels bounded by rigid tubes (cellulose tubes). The bulging effect of the PDMS was limited by the rigid tubes under flowing fluids. The PDMS viscoelasticity was modulated by changing the ratio of the base to the cross-linker from 10:1 to 35:1. We observed that the pressure drop of the flowing fluids within the channel decreased with the increased loss tangent of the PDMS in the examined laminar regime [Reynolds number (Re) ∼ 23-58.6 for water and Re ∼ 0.69-8.69 for glycerol solution]. The elastic PDMS 10:1 wall channels followed the classical Hagen Poiseuille's equation, but the PDMS walls with lower cross-linker concentrations and thicker walls decreased pressure drops. The friction factor (f) for the PDMS channels with the two working fluids could be approximated as f = 47/Re. We provide a correlation between the pressure drop and PDMS viscoelasticity based on experimental findings. In the correlation, the loss tangent predominates; the larger the loss tangent, the smaller is the pressure drop. The research findings appear to be unexpected if only considering the energy dissipation of viscoelastic PDMS walls. We attributed the reduction in the pressure drop to a lubricating effect of the viscoelastic PDMS walls in the presence of the working fluids. Our results reveal the importance of the subtle diffusion of the residual oligomers and water from the bulk to the soft wall/fluid interface for the observed pressure drop in soft wall channels.


Assuntos
Dimetilpolisiloxanos , Dispositivos Lab-On-A-Chip , Transporte Biológico , Viscosidade
13.
Langmuir ; 37(8): 2810-2815, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33577341

RESUMO

In the present pandemic time, face masks are found to be the most effective strategy against the spread of the virus within the community. As aerosol-based spreading of the virus is considered as the primary mode of transmission, the interaction of masks with incoming droplets needs to be understood thoroughly for an effective usage among the public. In the present work, we explore the interactions of the droplets over the most commonly used 3-ply surgical masks. A detailed study of the wetting signature, adhesion, and impact dynamics of water droplets and microbe-laden droplets is carried out for both sides of the mask. We found that the interfacial characteristics of the incoming droplets with the mask are very similar for the front and the back side of the mask. Further, in an anticipated attempt to reduce the adhesion, we have tested masks with a superhydrophobic coating. It is found that a superhydrophobic coating may not be the best choice for a regular mask as it can give rise to a number of smaller daughter droplets that can linger in air for longer times and can contribute to the transmission of potential viral loads.

14.
Langmuir ; 37(4): 1588-1595, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33459022

RESUMO

Adhesion behavior of microbial pathogens on commonly encountered surfaces is one of the most pertinent questions now. We present the characterization of bacteria-laden droplets and quantify the adhesion forces on highly repellent surfaces with the help of a simple experimental setup. Comparing the force signature measured directly using an in-house capillary deflection-based droplet force apparatus, we report an anomalous adhesion behavior of live bacteria (E. coli)-laden droplets on repellent surfaces, which stands in stark contrast to the observed adhesion signature when the doping agent is changed to inert microparticles or the same bacteria in an incapacitated state. We showed that the regular contact angle measurements using optical goniometry is unable to differentiate between the live bacteria and the dead ones (including microparticles) and thus delineate its limitations and the complementary nature of the adhesion measurements in understanding the fundamental interfacial interaction of living organisms on solid surfaces.


Assuntos
Escherichia coli , Propriedades de Superfície , Suspensões , Molhabilidade
15.
Langmuir ; 37(27): 8073-8082, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34185521

RESUMO

Experimental investigation of dropwise condensation of low-surface-tension liquids remains prone to error owing to the imaging difficulties caused by the typically low droplet height. Using reflection interference contrast microscopy in confocal mode, we demonstrate a noninvasive framework to accurately capture this condensation dynamics of volatile liquids with low surface tension. The capability of the developed framework is demonstrated in studying the condensation dynamics of acetone, where it accurately describes the growth mechanism of condensed microdroplets with excellent spatiotemporal resolution even for submicron-range drop height and a three-phase contact angle of <5°. From experimentally obtained interferograms, the framework can reconstruct three-dimensional topography of the microdroplets even when the contact line of the droplet is distorted due to strong local pinning. The obtained results exhibit excellent quantitative agreement with several theoretically predicted trends. The proposed protocol overcomes the limitation of conventional techniques (e.g., optical imaging/environmental scanning electron microscopy) and provides an efficient alternative for studying the condensation of low-surface-tension liquids under atmospheric conditions.

16.
Langmuir ; 37(19): 6007-6015, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33938218

RESUMO

Anisotropic microparticles have plenty of applications for their asymmetric structure and precisely modified surface. In our research, the uniform anisotropic microparticles with benzyl chloride group were synthesized successfully via emulsion interfacial polymerization. By varying the degree of cross-linking and the concentration of slightly hydrophilic monomer 4-vinyl benzyl chloride (VBC), several types of microparticles with different concavities and different shapes of microparticles (hemisphere, bowl-like, egg-like, etc.) were obtained. Nanoporous microparticles with a walnut-like heterostructure were achieved with modified hydrophilic seeds with the same strategy. The potential applications of shape-controllable fluorescent microparticles and surface modification of microparticles by thiol-click reaction were explored. The modified microparticles achieved in this study are very useful in labeling, tracing, protein separation, and other biomedical fields.

17.
Langmuir ; 36(19): 5096-5105, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32336101

RESUMO

In contrast to microdroplet condensation with high contact angles, the one with low contact angles remains unclear. In this study, we investigated dynamics of microdroplet condensation of low-surface-tension liquids on two flat substrate surfaces by using reflection interference confocal microscopy. Spontaneous migration toward relatively larger droplets was first observed for the microdroplets nucleated on the hydrophilic quartz surface. The moving microdroplets showed a contact angle hysteresis of ∼0.5°, which is much lower than the values observed on typical flat substrates and is within the range observed on slippery lubricant-infused porous surfaces. Because the microdroplets on the hydrophobic polydimethylsiloxane surface did not move, we concluded that the ultrathin precursor film is formed only on the hydrophilic surface, which reduces a resistive force to migration. Also, reduced size of droplets promotes the thermocapillary motion, which is induced by a gradient in local temperature inside a small microdroplet arising due to the difference in size of adjacent droplets.

18.
Langmuir ; 36(45): 13689-13697, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33156636

RESUMO

With the recent advancements in the development and application of repellent surfaces, both in air and under liquid medium, accurate characterization of repellence behavior is critical in understanding the mechanism behind many observed phenomena and to exploit them for novel applications. Conventionally, the repellence behavior of a surface is characterized by the optical measurement of the dynamic contact angle of the target (to be repelled) liquid on the test surface. However, as already established in the literature, optical measurements are prone to appreciable error, especially for repellent surfaces with high contact angles. Here, we present an alternative, more accurate force-based characterization method of both friction and adhesion forces of microparticle-laden aqueous droplets over various repellent surfaces, where the force signature is captured by probing the surface with a droplet of the test liquid mounted at the tip of a flexible cantilever and then tracking the deflection of the tip of the cantilever as the probe droplet interacts with the surface. A systematic investigation of the response of repellent surfaces toward droplets with different microparticle concentrations reveals the dependency and sensitivity of measured adhesion and friction signature toward particle concentration. A comparison with the theoretical estimate from optical goniometry highlights the deviation of the theoretical data from experimentally measured values and further substantiates the need for such a force-based approach for accurate characterization of repellence behavior.

19.
Soft Matter ; 16(32): 7447-7457, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32638821

RESUMO

Soft contacts present different tribological responses compared to stiff materials, especially when soft materials exhibit viscoelastic behaviour, as viscoelastic materials have intermediate mechanical properties between viscous liquids and elastic solids. In this work, we investigated the influence of viscoelasticity of soft materials on sliding friction in dry and lubricated conditions. To achieve this, soft tribopairs with varying viscoelasticity were obtained by tuning the weight ratios of polydimethylsiloxane (PDMS) base and curing agent. The real-time friction force and preload were observed over multiple conditions, with systematic control of lubricant viscosity, preload, and sliding velocity. Tribopairs with a higher proportion of viscous character had more oscilliations in the friction force. They also presented a higher friction coefficient due to the increased contribution of viscoelastic hysteresis losses on friction. Through regression analysis, the models of the friction coefficient were found, which are in good agreement with experimental results. From the models, we found that in both dry and lubricated conditions, viscoelasticity of tribopairs, indicated as the loss modulus or loss tangent, plays a key role in determining the friction coefficient. This influence is particularly significant for dry contacts due to the direct interactions between surfaces of tribopairs. This study provides empirical proof and a focused analysis on the role of viscoelasticity in tribological contacts.

20.
Phys Chem Chem Phys ; 22(15): 7710-7718, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32215391

RESUMO

When a liquid drop sits on an atomically thin layer of a 2D van der Waals (vdW) solid (like graphene) supported by a hydrophilic material, it is possible that the drop demonstrates an equilibrium contact angle that is influenced by this underlying hydrophilic material and hence is different from that observed on the bulk 2D material (e.g., graphite) surface. Such a behavior is known as the wetting translucency effect. While the wetting translucency effect of graphene has been extensively studied, the wetting translucency of hexagonal boron nitride (hBN) remains largely unexplored despite significant similarities in structural properties between these materials. In this study, we probe the wetting translucency of hBN. For this purpose, we conduct molecular dynamics simulations of water droplets and water films on hBN layers supported on a gold-like hydrophilic substrate. Our results show that for a substrate coated by monolayer hBN ("coated substrate"), depending on the contact distance between underlying substrate and hBN, an increase in the hydrophilicity of the underlying surface causes a monotonic increase in the overall adhesion energy between water and the coated substrate and a monotonic decrease in the contact angle of a drop on the coated substrate. For an increasing number of stacked hBN layers, the wettability of coated substrate becomes independent of the wettability of the underlying solid. Accordingly, our results confirm a distinct wetting translucency nature of hBN very similar to that observed in graphene.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa