Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Eur J Neurosci ; 57(9): 1611-1624, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949610

RESUMO

Photobiomodulation (PBM)-the irradiation of tissue with low-intensity light-mitigates neuropathology in rodent models of Parkinson's disease (PD) when targeted at the head ('transcranial PBM'). In humans, however, attenuation of light energy by the scalp and skull necessitates a different approach. We have reported that targeting PBM at the body also protects the brain by a mechanism that spreads from the irradiated tissue ('remote PBM'), although the optimal peripheral tissue target for remote PBM is currently unclear. This study compared the neuroprotective efficacy of remote PBM targeting the abdomen or leg with transcranial PBM, in mouse and non-human primate models of PD. In a pilot study, the neurotoxin MPTP was used to induce PD in non-human primates; PBM (670 nm, 50 mW/cm2 , 6 min/day) of the abdomen (n = 1) was associated with fewer clinical signs and more surviving midbrain dopaminergic cells relative to MPTP-injected non-human primates not treated with PBM. Validation studies in MPTP-injected mice (n = 10 per group) revealed a significant rescue of midbrain dopaminergic cells in mice receiving PBM to the abdomen (~80%, p < .0001) or legs (~80%, p < .0001), with comparable rescue of axonal terminals in the striatum. Strikingly, this degree of neuroprotection was at least as, if not more, pronounced than that achieved with transcranial PBM. These findings confirm that remote PBM provides neuroprotection against MPTP-induced destruction of the key circuitry underlying PD, with both the abdomen and legs serving as viable remote targets. This should provide the impetus for a comprehensive investigation of remote PBM-induced neuroprotection in other models of PD and, ultimately, human patients.


Assuntos
Neuroproteção , Doença de Parkinson , Humanos , Camundongos , Animais , Perna (Membro) , Projetos Piloto , Doença de Parkinson/terapia , Abdome
2.
BMC Neurol ; 21(1): 256, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215216

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease with no cure and few treatment options. Its incidence is increasing due to aging populations, longer disease duration and potentially as a COVID-19 sequela. Photobiomodulation (PBM) has been successfully used in animal models to reduce the signs of PD and to protect dopaminergic neurons. OBJECTIVE: To assess the effectiveness of PBM to mitigate clinical signs of PD in a prospective proof-of-concept study, using a combination of transcranial and remote treatment, in order to inform on best practice for a larger randomized placebo-controlled trial (RCT). METHODS: Twelve participants with idiopathic PD were recruited. Six were randomly chosen to begin 12 weeks of transcranial, intranasal, neck and abdominal PBM. The remaining 6 were waitlisted for 14 weeks before commencing the same treatment. After the 12-week treatment period, all participants were supplied with PBM devices to continue home treatment. Participants were assessed for mobility, fine motor skills, balance and cognition before treatment began, after 4 weeks of treatment, after 12 weeks of treatment and the end of the home treatment period. A Wilcoxon Signed Ranks test was used to assess treatment effectiveness at a significance level of 5%. RESULTS: Measures of mobility, cognition, dynamic balance and fine motor skill were significantly improved (p < 0.05) with PBM treatment for 12 weeks and up to one year. Many individual improvements were above the minimal clinically important difference, the threshold judged to be meaningful for participants. Individual improvements varied but many continued for up to one year with sustained home treatment. There was a demonstrable Hawthorne Effect that was below the treatment effect. No side effects of the treatment were observed. CONCLUSIONS: PBM was shown to be a safe and potentially effective treatment for a range of clinical signs and symptoms of PD. Improvements were maintained for as long as treatment continued, for up to one year in a neurodegenerative disease where decline is typically expected. Home treatment of PD by the person themselves or with the help of a carer might be an effective therapy option. The results of this study indicate that a large RCT is warranted. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, registration number: ACTRN12618000038291p , registered on 12/01/2018.


Assuntos
Terapia com Luz de Baixa Intensidade , Doença de Parkinson/terapia , COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2
3.
Exp Brain Res ; 239(2): 435-449, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33211136

RESUMO

Using fMRI (functional magnetic resonance imaging), we explored the effect of transcranial photobiomodulation on four major resting-state brain networks, namely the sensorimotor, salience, default mode and central executive networks, in normal young subjects. We used a vielight transcranial device (810 nm) and compared the scans in 20 subjects (mean age 30.0 ± 2.8 years) after active- and sham-photobiomodulation sessions. Four sets of analysis-independent components, network connectivity, infra-slow oscillatory power and arterial spin labelling-were undertaken. Our results showed that when comparing pre- with post-active and pre- with post-sham photobiomodulation scans, there were no substantial differences in activity across any of the four resting-state networks examined, indicating no clear photobiomodulation effect. When taken together with previous findings, we suggest that the impact of photobiomodulation becomes much clearer only after brain circuitry is altered, for example, after a neurone undergoes some change in its equilibrium or homeostasis, either during pathology or ageing, or during a change in functional activity when individuals are engaged in a specific task (e.g. evoked brain activity).


Assuntos
Mapeamento Encefálico , Encéfalo , Adulto , Envelhecimento , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Vias Neurais , Sujeitos da Pesquisa
4.
Exp Brain Res ; 236(4): 955-961, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29379995

RESUMO

In this study, we examined the cellular distribution of encephalopsin (opsin 3; OPN3) expression in the striatum of non-human primates. In addition, because of our long standing interest in Parkinson's disease and neuroprotection, we examined whether parkinsonian (MPTP; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) insult and/or photobiomodulation (670 nm) had any impact on encephalopsin expression in this key area of the basal ganglia. Striatal sections of control naïve monkeys, together with those that were either MPTP- and/or photobiomodulation-treated were processed for immunohistochemistry. Our results revealed two populations of striatal interneurones that expressed encephalopsin, one of which was the giant, choline acetyltransferase-containing, cholinergic interneurones. The other population had smaller somata and was not cholinergic. Neither cell group expressed the calcium-binding protein, parvalbumin. There was also rich encephalopsin expression in a set of terminals forming striosome-like patches across the striatum. Finally, we found that neither parkinsonian (MPTP) insult nor photobiomodulation had any effect on encephalopsin expression in the striatum. In summary, our results revealed an extensive network of encephalopsin containing structures throughout the striatum, indicating that external light is in a position to influence a range of striatal activities at both the interneurone and striosome level.


Assuntos
Corpo Estriado/metabolismo , Interneurônios/metabolismo , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Imuno-Histoquímica , Intoxicação por MPTP/terapia , Macaca fascicularis
5.
Ann Neurol ; 79(1): 59-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26456231

RESUMO

OBJECTIVE: To examine whether near-infrared light (NIr) treatment reduces clinical signs and/or offers neuroprotection in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson disease. METHODS: We implanted an optical fiber device that delivered NIr (670 nm) to the midbrain of macaque monkeys, close to the substantia nigra of both sides. MPTP injections (1.5-2.1mg/kg) were made over a 5- to 7-day period, during which time the NIr device was turned on. This was then followed by a 3-week survival period. Monkeys were evaluated clinically (eg, posture, bradykinesia) and behaviorally (open field test), and their brains were processed for immunohistochemistry and stereology. RESULTS: All monkeys in the MPTP group developed severe clinical and behavioral impairment (mean clinical scores = 21-34; n = 11). By contrast, the MPTP-NIr group developed much less clinical and behavioral impairment (n = 9); some monkeys developed moderate clinical signs (mean scores = 11-15; n = 3), whereas the majority--quite remarkably--developed few clinical signs (mean scores = 1-6; n = 6). The monkeys that developed moderate clinical signs had hematic fluid in their optical fibers at postmortem, presumably limiting NIr exposure and overall clinical improvement. NIr was not toxic to brain tissue and offered neuroprotection to dopaminergic cells and their terminations against MPTP insult, particularly in animals that developed few clinical signs. INTERPRETATION: Our findings indicate NIr to be an effective therapeutic agent in a primate model of the disease and create the template for translation into clinical trials.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Comportamento Animal/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/prevenção & controle , Mesencéfalo/efeitos da radiação , Neurotoxinas/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/fisiopatologia , Macaca fascicularis , Masculino , Mesencéfalo/efeitos dos fármacos , Neurotoxinas/administração & dosagem , Fibras Ópticas
6.
Exp Brain Res ; 235(10): 3081-3092, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28744621

RESUMO

In this study, we explored the effects of a longer term application, up to 12 weeks, of photobiomodulation in normal, naïve macaque monkeys. Monkeys (n = 5) were implanted intracranially with an optical fibre device delivering photobiomodulation (red light, 670 nm) to a midline midbrain region. Animals were then aldehyde-fixed and their brains were processed for immunohistochemistry. In general, our results showed that longer term intracranial application of photobiomodulation had no adverse effects on the surrounding brain parenchyma or on the nearby dopaminergic cell system. We found no evidence for photobiomodulation generating an inflammatory glial response or neuronal degeneration near the implant site; further, photobiomodulation did not induce an abnormal activation or mitochondrial stress in nearby cells, nor did it cause an abnormal arrangement of the surrounding vasculature (endothelial basement membrane). Finally, because of our interest in Parkinson's disease, we noted that photobiomodulation had no impact on the number of midbrain dopaminergic cells and the density of their terminations in the striatum. In summary, we found no histological basis for any major biosafety concerns associated with photobiomodulation delivered by our intracranial approach and our findings set a key template for progress onto clinical trial on patients with Parkinson's disease.


Assuntos
Corpo Estriado , Neurônios Dopaminérgicos , Terapia com Luz de Baixa Intensidade/efeitos adversos , Mesencéfalo , Fibras Ópticas/efeitos adversos , Próteses e Implantes/efeitos adversos , Animais , Terapia com Luz de Baixa Intensidade/instrumentação , Macaca fascicularis
7.
Exp Brain Res ; 235(6): 1861-1874, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28299414

RESUMO

Intracranial application of red to infrared light, known also as photobiomodulation (PBM), has been shown to improve locomotor activity and to neuroprotect midbrain dopaminergic cells in rodent and monkey models of Parkinson's disease. In this study, we explored whether PBM has any influence on the number of tyrosine hydroxylase (TH)+cells and the expression of GDNF (glial-derived neurotrophic factor) in the striatum. Striatal sections of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice and monkeys and 6-hydroxydopamine (6OHDA)-lesioned rats that had PBM optical fibres implanted intracranially (or not) were processed for immunohistochemistry (all species) or western blot analysis (monkeys). In our MPTP monkey model, which showed a clear loss in striatal dopaminergic terminations, PBM generated a striking increase in striatal TH+ cell number, 60% higher compared to MPTP monkeys not treated with PBM and 80% higher than controls. This increase was not evident in our MPTP mouse and 6OHDA rat models, both of which showed minimal loss in striatal terminations. In monkeys, the increase in striatal TH+ cell number in MPTP-PBM cases was accompanied by similar increases in GDNF expression, as determined from western blots, from MPTP and control cases. In summary, these results offer insights into the mechanisms by which PBM generates its beneficial effects, potentially with the use of trophic factors, such as GDNF.


Assuntos
Núcleo Caudado/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Putamen/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Contagem de Células , Modelos Animais de Doenças , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar
8.
Int J Mol Sci ; 18(10)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29053638

RESUMO

Although there have been many pharmacological agents considered to be neuroprotective therapy in Parkinson's disease (PD) patients, neurosurgical approaches aimed to neuroprotect or restore the degenerative nigrostriatal system have rarely been the focus of in depth reviews. Here, we explore the neuroprotective strategies involving invasive surgical approaches (NSI) using neurotoxic models 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which have led to clinical trials. We focus on several NSI approaches, namely deep brain stimulation of the subthalamic nucleus, glial neurotrophic derived factor (GDNF) administration and cell grafting methods. Although most of these interventions have produced positive results in preclinical animal models, either from behavioral or histological studies, they have generally failed to pass randomized clinical trials to validate each approach. We argue that NSI are promising approaches for neurorestoration in PD, but preclinical studies should be planned carefully in order not only to detect benefits but also to detect potential adverse effects. Further, clinical trials should be designed to be able to detect and disentangle neuroprotection from symptomatic effects. In summary, our review study evaluates the pertinence of preclinical models to study NSI for PD and how this affects their efficacy when translated into clinical trials.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Estimulação Encefálica Profunda/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Doença de Parkinson/prevenção & controle , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Neuroproteção , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Resultado do Tratamento
9.
J Neurochem ; 139(5): 858-871, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27696408

RESUMO

Dietary saffron has shown promise as a neuroprotective intervention in clinical trials of retinal degeneration and dementia and in animal models of multiple CNS disorders, including Parkinson's disease. This therapeutic potential makes it important to define the relationship between dose and protection and the mechanisms involved. To explore these two issues, mice were pre-conditioned by providing an aqueous extract of saffron (0.01% w/v) as their drinking water for 2, 5 or 10 days before administration of the parkinsonian neurotoxin MPTP (50 mg/kg). Five days of saffron pre-conditioning provided the greatest benefit against MPTP-induced neuropathology, significantly mitigating both loss of functional dopaminergic cells in the substantia nigra pars compacta (p < 0.01) and abnormal neuronal activity in the caudate-putamen complex (p < 0.0001). RNA microarray analysis of the brain transcriptome of mice pre-conditioned with saffron for 5 days revealed differential expression of 424 genes. Bioinformatics analysis identified enrichment of molecular pathways (e.g. adherens junction, TNFR1 and Fas signaling) and expression changes in candidate genes (Cyr61, Gpx8, Ndufs4, and Nos1ap) with known neuroprotective actions. The apparent biphasic nature of the dose-response relationship between saffron and measures of neuroprotection, together with the stress-inducible nature of many of the up-regulated genes and pathways, lend credence to the idea that saffron, like various other phytochemicals, is a hormetic stimulus, with functions beyond its strong antioxidant capacity. These findings provide impetus for a more comprehensive evaluation of saffron as a neuroprotective intervention.


Assuntos
Encéfalo/metabolismo , Crocus , Intoxicação por MPTP/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Transcriptoma/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Transcriptoma/efeitos dos fármacos
10.
Exp Brain Res ; 234(7): 1787-1794, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26879772

RESUMO

We have shown previously that near-infrared light (NIr), when applied at the same time as a parkinsonian insult (e.g. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPTP), reduces behavioural deficits and offers neuroprotection. Here, we explored whether the timing of NIr intervention-either before, at the same time or after the MPTP insult-was important. Mice received MPTP injections (total of 50 mg/kg) and, at various stages in relation to these injections, extracranial application of NIr. Locomotor activity was tested with an open-field test, and brains were processed for immunohistochemistry. Our results showed that regardless of when NIr was applied in relation to MPTP insult, behavioural impairment was reduced by a similar magnitude. The beneficial effect of NIr was fast-acting (within minutes) and long-lasting (for several days). There were more dopaminergic cells in the NIr-treated MPTP groups than in the MPTP group; there was no clear indication that a particular combination of NIr treatment and MPTP injection resulted in a higher cell number. In summary, irrespective of whether it was applied before, at the same time as or after MPTP insult, NIr reduced both behavioural and structural measures of damage by a similar magnitude. There was a broad therapeutic time window of NIr application in relation to the stage of toxic insult, and the NIr was fast-acting and long-lasting.


Assuntos
Comportamento Animal/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/terapia , Atividade Motora/efeitos da radiação , Fototerapia/métodos , Animais , Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo
11.
Exp Brain Res ; 234(11): 3225-3232, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27377070

RESUMO

We have reported previously that intracranial application of near-infrared light (NIr) reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson's disease. In this study, we explored whether NIr reduces the gliosis in this animal model. Sections of midbrain (containing the substantia nigra pars compacta; SNc) and striatum were processed for glial fibrillary acidic protein (to label astrocytes; GFAP) and ionised calcium-binding adaptor molecule 1 (to label microglia; IBA1) immunohistochemistry. Cell counts were undertaken using stereology, and cell body sizes were measured using ImageJ. Our results showed that NIr treatment reduced dramatically (~75 %) MPTP-induced astrogliosis in both the SNc and striatum. Among microglia, however, NIr had a more limited impact in both nuclei; although there was a reduction in overall cell size, there were no changes in the number of microglia in the MPTP-treated monkeys after NIr treatment. In summary, we showed that NIr treatment influenced the glial response, particularly that of the astrocytes, in our monkey MPTP model of Parkinson's disease. Our findings raise the possibility of glial cells as a future therapeutic target using NIr.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Gliose/etiologia , Gliose/terapia , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/complicações , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/patologia , Macaca fascicularis , Masculino , Proteínas dos Microfilamentos , Neuroglia/efeitos dos fármacos , Neuroglia/efeitos da radiação , Neurotoxinas/toxicidade , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia
12.
Int J Neurosci ; 126(1): 76-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25469453

RESUMO

We have used the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model to explore whether (i) the neuroprotective effect of near infrared light (NIr) treatment in the SNc is dose-dependent and (ii) the relationship between tyrosine hydroxylase (TH)+ terminal density and glial cells in the caudate-putamen complex (CPu). Mice received MPTP injections (50 mg/kg) and 2 J/cm2 NIr dose with either 2 d or 7 d survival period. In another series, with a longer 14 d survival period, mice had a stronger MPTP regime (100 mg/kg) and either 2 J/cm2 or 4 J/cm2 NIr dose. Brains were processed for routine immunohistochemistry and cell counts were made using stereology. Our findings were that in the 2 d series, no change in SNc TH+ cell number was evident after any treatment. In the 7 d series however, MPTP insult resulted in ∼45% reduction in TH+ cell number; after NIr (2 J/cm2) treatment, many cells were protected from the toxic insult. In the 14 d series, MPTP induced a similar reduction in TH+ cell number. NIr mitigated the loss of TH+ cells, but only at the higher dose of 4 J/cm2; the lower dose of 2 J/cm2 had no neuroprotective effect in this series. The higher dose of NIr, unlike the lower dose, also mitigated the MPTP- induced increase in CPu astrocytes after 14 d; these changes were independent of TH+ terminal density, of which, did not vary across the different experimental groups. In summary, we showed that neuroprotection by NIr irradiation in MPTP-treated mice was dose-dependent; with increasing MPTP toxicity, higher doses of NIr were required to protect cells and reduce astrogliosis.


Assuntos
Neurônios Dopaminérgicos/efeitos da radiação , Gliose/radioterapia , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/radioterapia , Transtornos Parkinsonianos/radioterapia , Parte Compacta da Substância Negra/efeitos da radiação , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Astrócitos/patologia , Astrócitos/efeitos da radiação , Núcleo Caudado/patologia , Núcleo Caudado/efeitos da radiação , Contagem de Células , Sobrevivência Celular/efeitos da radiação , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Gliose/patologia , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/análise , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/patologia , Putamen/patologia , Putamen/efeitos da radiação , Tirosina 3-Mono-Oxigenase/análise
13.
J Alzheimers Dis ; 97(3): 1069-1081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217606

RESUMO

This review advances an understanding of several dementias, based on four premises. One is that capillary hemorrhage is prominent in the pathogenesis of the dementias considered (dementia pugilistica, chronic traumatic encephalopathy, traumatic brain damage, Alzheimer's disease). The second premise is that hemorrhage introduces four neurotoxic factors into brain tissue: hypoxia of the tissue that has lost its blood supply, hemoglobin and its breakdown products, excitotoxic levels of glutamate, and opportunistic pathogens that can infect brain cells and induce a cytotoxic immune response. The third premise is that where organisms evolve molecules that are toxic to itself, like the neurotoxicity ascribed to hemoglobin, amyloid- (A), and glutamate, there must be some role for the molecule that gives the organism a selection advantage. The fourth is the known survival-advantage roles of hemoglobin (oxygen transport), of A (neurotrophic, synaptotrophic, detoxification of heme, protective against pathogens) and of glutamate (a major neurotransmitter). From these premises, we propose 1) that the brain has evolved a multi-factor response to intracerebral hemorrhage, which includes the expression of several protective molecules, including haptoglobin, hemopexin and A; and 2) that it is logical, given these premises, to posit that the four neurotoxic factors set out above, which are introduced into the brain by hemorrhage, drive the progression of the capillary-hemorrhage dementias. In this view, A expressed at the loci of neuronal death in these dementias functions not as a toxin but as a first responder, mitigating the toxicity of hemoglobin and the infection of the brain by opportunistic pathogens.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Hemorragia Cerebral/complicações , Encéfalo/patologia , Hemoglobinas/metabolismo , Glutamatos
14.
BMC Neurosci ; 14: 40, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23531041

RESUMO

BACKGROUND: We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson's disease. The present study explores whether NIr treatment offers neuroprotection to these cells in C57BL/6 pigmented mice. In addition, we examine whether NIr influences behavioural activity in both strains after MPTP treatment. We tested for various locomotive parameters in an open-field test, namely velocity, high mobility and immobility. RESULTS: Balb/c (albino) and C57BL/6 (pigmented) mice received injections of MPTP (total of 50 mg/kg) or saline and NIr treatments (or not) over 48 hours. After each injection and/or NIr treatment, the locomotor activity of the mice was tested. After six days survival, brains were processed for TH (tyrosine hydroxylase) immunochemistry and the number of TH⁺ cells in the substantia nigra pars compacta (SNc) was estimated using stereology. Results showed higher numbers of TH⁺ cells in the MPTP-NIr groups of both strains, compared to the MPTP groups, with the protection greater in the Balb/c mice (30% vs 20%). The behavioural tests revealed strain differences also. For Balb/c mice, the MPTP-NIr group showed greater preservation of locomotor activity than the MPTP group. Behavioural preservation was less evident in the C57BL/6 strain however, with little effect of NIr being recorded in the MPTP-treated cases of this strain. Finally, there were differences between the two strains in terms of NIr penetration across the skin and fur. Our measurements indicated that NIr penetration was considerably less in the pigmented C57BL/6, compared to the albino Balb/c mice. CONCLUSIONS: In summary, our results revealed the neuroprotective benefits of NIr treatment after parkinsonian insult at both cellular and behavioural levels and suggest that Balb/c strain, due to greater penetration of NIr through skin and fur, provides a clearer model of protection than the C57BL/6 strain.


Assuntos
Neurônios Dopaminérgicos/efeitos da radiação , Raios Infravermelhos , Intoxicação por MPTP/patologia , Intoxicação por MPTP/terapia , Mesencéfalo/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Comportamento Exploratório/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos da radiação , Neurotoxinas/toxicidade , Especificidade da Espécie , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Cells ; 12(21)2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947612

RESUMO

In this study, we tested the idea that photobiomodulation-the application of red to near infrared light (~λ = 600-1300 nm) to body tissues-is more effective in influencing cell metabolism when glucose is readily available. To this end, we used a mouse fibroblast (L-929) cell culture model and had two sets of conditions: non-stressed (10% FBS (foetal bovine serum)) and stressed (1% FBS), both either with or without glucose. We treated (or not) cells with photobiomodulation using an 810 nm laser at 15 mW/cm2 (~7.2 J/cm2). Our results showed that photobiomodulation was neither cytotoxic nor effective in enhancing measures of cell viability and proliferation, together with protein levels in any of the cell cultures. Photobiomodulation was, however, effective in increasing adenosine triphosphate (ATP) and decreasing reactive oxygen species (ROS) levels and this was-most importantly-only in conditions where glucose was present; corresponding cultures that did not contain glucose did not show these changes. In summary, we found that the benefits of photobiomodulation, in particular in changing ATP and ROS levels, were induced only when there was glucose available. Our findings lay a template for further explorations into the mechanisms of photobiomodulation, together with having considerable experimental and clinical implications.


Assuntos
Trifosfato de Adenosina , Raios Infravermelhos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas de Cultura de Células , Fibroblastos/metabolismo
16.
Neural Regen Res ; 18(7): 1423-1426, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571337

RESUMO

Epilepsy is synonymous with individuals suffering repeated "fits" or seizures. The seizures are triggered by bursts of abnormal neuronal activity, across either the cerebral cortex and/or the hippocampus. In addition, the seizure sites are characterized by considerable neuronal death. Although the factors that generate this abnormal activity and death are not entirely clear, recent evidence indicates that mitochondrial dysfunction plays a central role. Current treatment options include drug therapy, which aims to suppress the abnormal neuronal activity, or surgical intervention, which involves the removal of the brain region generating the seizure activity. However, ~30% of patients are unresponsive to the drugs, while the surgery option is invasive and has a morbidity risk. Hence, there is a need for the development of an effective non-pharmacological and non-invasive treatment for this disorder, one that has few side effects. In this review, we consider the effectiveness of a potential new treatment for epilepsy, known as photobiomodulation, the use of red to near-infrared light on body tissues. Recent studies in animal models have shown that photobiomodulation reduces seizure-like activity and improves neuronal survival. Further, it has an excellent safety record, with little or no evidence of side effects, and it is non-invasive. Taken all together, this treatment appears to be an ideal treatment option for patients suffering from epilepsy, which is certainly worthy of further consideration.

17.
Front Neurosci ; 17: 1141568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950132

RESUMO

Of all our organs, the brain is perhaps the best protected from trauma. The skull has evolved to enclose it and, within the skull, the brain floats in a protective bath of cerebrospinal fluid. It is becoming evident, however, that head trauma experienced in young adult life can cause a dementia that appears decades later. The level of trauma that induces such destruction is still being assessed but includes levels well below that which cracks the skull or causes unconsciousness or concussion. Clinically this damage appears as dementia, in people who played body-contact sports in their youth or have survived accidents or the blasts of combat; and appears also, we argue, in old age, without a history of head trauma. The dementias have been given different names, including dementia pugilistica (affecting boxers), chronic traumatic encephalopathy (following certain sports, particularly football), traumatic brain injury (following accidents, combat) and Alzheimer's (following decades of life). They share common features of clinical presentation and neuropathology, and this conceptual analysis seeks to identify features common to these forms of brain injury and to identify where in the brain the damage common to them occurs; and how it occurs, despite the protection provided by the skull and cerebrospinal fluid. The analysis suggests that the brain's weak point in the face of trauma is its capillary bed, which is torn by the shock of trauma. This identification in turn allows discussion of ways of delaying, avoiding and even treating these trauma-induced degenerations.

18.
Rev Neurosci ; 34(6): 671-693, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36927734

RESUMO

In recent years, transcranial photobiomodulation (tPBM) has been developing as a promising method to protect and repair brain tissues against damages. The aim of our systematic review is to examine the results available in the literature concerning the efficacy of tPBM in changing brain activity in humans, either in healthy individuals, or in patients with neurological diseases. Four databases were screened for references containing terms encompassing photobiomodulation, brain activity, brain imaging, and human. We also analysed the quality of the included studies using validated tools. Results in healthy subjects showed that even after a single session, tPBM can be effective in influencing brain activity. In particular, the different transcranial approaches - using a focal stimulation or helmet for global brain stimulation - seemed to act at both the vascular level by increasing regional cerebral blood flow (rCBF) and at the neural level by changing the activity of the neurons. In addition, studies also showed that even a focal stimulation was sufficient to induce a global change in functional connectivity across brain networks. Results in patients with neurological disease were sparser; nevertheless, they indicated that tPBM could improve rCBF and functional connectivity in several regions. Our systematic review also highlighted the heterogeneity in the methods and results generated, together with the need for more randomised controlled trials in patients with neurological diseases. In summary, tPBM could be a promising method to act on brain function, but more consistency is needed in order appreciate fully the underlying mechanisms and the precise outcomes.


Assuntos
Terapia com Luz de Baixa Intensidade , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Encéfalo/fisiologia , Circulação Cerebrovascular
19.
Rev Neurosci ; 34(4): 459-481, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302150

RESUMO

This systematic review examines the effect of photobiomodulation (PBM), the application of red to near infrared light on body tissues, on the neuroinflammatory response and oxidative stress in animal models of neurodegenerative diseases. The research question and search protocol were prospectively registered on the PROSPERO database. Neurodegenerative diseases are becoming ever more prevalent in the ageing populations across the Western world, with no disease-modifying or neuroprotective treatment options being available. Hence there is a real need for the development of effective treatment options for patients. Inflammatory responses and oxidative stress within the central nervous system have a strong correlation with neuronal cell death. PBM is a non-invasive therapeutic option that has shown efficacy and promising effects in animal models of neurodegenerative disease; many studies have reported neuroprotection and improved behavioural outcomes. To the best of our knowledge, there has been no previous study that has reviewed the anti-inflammatory and the antioxidant effect of PBM in the context of neurodegeneration. This review has examined this relationship in animal models of a range of neurodegenerative diseases. We found that PBM can effectively reduce glial activation, pro-inflammatory cytokine expression and oxidative stress, whilst increasing anti-inflammatory glial responses and cytokines, and antioxidant capacity. These positive outcomes accompanied the neuroprotection evident after PBM treatment. Our review provides further indication that PBM can be developed into an effective non-pharmacological intervention for neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/radioterapia , Estresse Oxidativo , Antioxidantes , Inflamação/terapia , Inflamação/metabolismo , Modelos Animais , Anti-Inflamatórios
20.
Neural Regen Res ; 18(3): 474-477, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018149

RESUMO

Sleep is a critical part of our daily routine. It impacts every organ and system of our body, from the brain to the heart and from cellular metabolism to immune function. A consistent daily schedule of quality of sleep makes a world of difference to our health and well-being. Despite its importance, so many individuals have trouble sleeping well. Poor quality sleep has such a detrimental impact on many aspects of our lives; it affects our thinking, learning, memory, and movements. Further, and most poignantly, poor quality sleep over time increases the risk of developing a serious medical condition, including neurodegenerative disease. In this review, we focus on a potentially new non-pharmacological treatment that improves the quality of sleep. This treatment, called photobiomodulation, involves the application of very specific wavelengths of light to body tissues. In animal models, these wavelengths, when applied at night, have been reported to stimulate the removal of fluid and toxic waste-products from the brain; that is, they improve the brain's inbuilt house-keeping function. We suggest that transcranial nocturnal photobiomodulation, by improving brain function at night, will help improve the health and well-being of many individuals, by enhancing the quality of their sleep.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa