RESUMO
A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.
Assuntos
Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Sequências Repetitivas de Ácido Nucleico , Adaptação Fisiológica/genética , Alelos , Animais , Evolução Biológica , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Feminino , Variação Genética , Genética Populacional , Masculino , Camundongos , Modelos Genéticos , Mutação , Seleção GenéticaRESUMO
Microtus thomasi (Rodentia: Arvicolinae), a fossorial vole endemic to the SW Balkans, uses a variety of substrates but its underground behavior remains poorly understood. This study examines the architecture and utilization of M. thomasi burrow systems in NW Peloponnese, Greece. In particular, eight burrow systems were meticulously excavated and studied, with comprehensive measurements taken of key characteristics, including length, depth, soil mounds, and surface openings. Key coordinates were recorded using a differential GPS device for detailed mapping and fractal dimension analysis using the box-counting method was employed to assess burrow system complexity. Soil samples were analyzed for particle size and chemical composition, and vegetation types at each site were identified. We did not find statistically significant correlations between size and complexity of the burrow systems and soil composition, altitude, or specific soil components. On the other hand, we did observe statistically significant differences in tunnel diameter between two burrow systems and in tunnel depth between more. Moreover, our study showed that more than one same-sex individual can occupy a single burrow system and not just an adult male-female pair, that was previously recorded, indicating the need for further study of the social behavior of this vole species. This study provides valuable insights into the underground behavior of M. thomasi by providing information on the features of its burrow systems, thus contributing to our understanding of its biology.
RESUMO
The quantitative variation of a conserved region of the LINE-1 ORF2 sequence was determined in eight species and subspecies of the subgenus Mus (M. m. domesticus, M. m. musculus, M. m. castaneus, M. spicilegus, M. spretus, M. cervicolor, M. cookii, M. caroli) and five Robertsonian races of M. m. domesticus. No differences in LINE-1 ORF2 content were found between all acrocentric or Robertsonian chromosome races, whereas the quantitative variation of the LINE-1 ORF2 sequences detected among the eight taxa partly matches with the clades into which the subgenus is divided. An accumulation of LINE-1 ORF2 elements likely occurred during the evolution of the subgenus. Within the Asiatic clade, M. cervicolor, cookii, and caroli show a low quantity of LINE-1 sequences, also detected within the Palearctic clade in M. m. castaneus and M. spretus, representing perhaps the ancestral condition within the subgenus. On the other hand, M. m. domesticus, M. m. musculus and M. spicilegus showed a high content of LINE-1 ORF2 sequences. Comparison between the chromosomal hybridization pattern of M. m. domesticus, which possesses the highest content, and M. spicilegus did not show any difference in the LINE-1 ORF2 distribution, suggesting that the quantitative variation of this sequence family did not involve chromosome restructuring or a preferential chromosome accumulation, during the evolution of M. m. domesticus.
Assuntos
Variação Genética , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos/genética , Animais , Sequência de Bases , Cromossomos/genética , Feminino , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Especificidade da EspécieRESUMO
Mammalian karyotypes (number and structure of chromosomes) can vary dramatically over short evolutionary time frames. There are examples of massive karyotype conversion, from mostly telocentric (centromere terminal) to mostly metacentric (centromere internal), in 10(2)-10(5) years. These changes typically reflect rapid fixation of Robertsonian (Rb) fusions, a common chromosomal rearrangement that joins two telocentric chromosomes at their centromeres to create one metacentric. Fixation of Rb fusions can be explained by meiotic drive: biased chromosome segregation during female meiosis in violation of Mendel's first law. However, there is no mechanistic explanation of why fusions would preferentially segregate to the egg in some populations, leading to fixation and karyotype change, while other populations preferentially eliminate the fusions and maintain a telocentric karyotype. Here we show, using both laboratory models and wild mice, that differences in centromere strength predict the direction of drive. Stronger centromeres, manifested by increased kinetochore protein levels and altered interactions with spindle microtubules, are preferentially retained in the egg. We find that fusions preferentially segregate to the polar body in laboratory mouse strains when the fusion centromeres are weaker than those of telocentrics. Conversely, fusion centromeres are stronger relative to telocentrics in natural house mouse populations that have changed karyotype by accumulating metacentric fusions. Our findings suggest that natural variation in centromere strength explains how the direction of drive can switch between populations. They also provide a cell biological basis of centromere drive and karyotype evolution.