RESUMO
Interleukin-1 (IL-1) signaling is essential for controlling virulent Mycobacterium tuberculosis (Mtb) infection since antagonism of this pathway leads to exacerbated pathology and increased susceptibility. In contrast, the triggering of type I interferon (IFN) signaling is associated with the progression of tuberculosis (TB) disease and linked with negative regulation of IL-1 signaling. However, mice lacking IL-1 signaling can control Mtb infection if infected with an Mtb strain carrying the rifampin-resistance conferring mutation H445Y in its RNA polymerase ß subunit (rpoB-H445Y Mtb). The mechanisms that govern protection in the absence of IL-1 signaling during rpoB-H445Y Mtb infection are unknown. In this study, we show that in the absence of IL-1 signaling, type I IFN signaling controls rpoB-H445Y Mtb replication, lung pathology, and excessive myeloid cell infiltration. Additionally, type I IFN is produced predominantly by monocytes and recruited macrophages and acts on LysM-expressing cells to drive protection through nitric oxide (NO) production to restrict intracellular rpoB-H445Y Mtb. These findings reveal an unexpected protective role for type I IFN signaling in compensating for deficiencies in IL-1 pathways during rpoB-H445Y Mtb infection.
Assuntos
Proteínas de Bactérias , RNA Polimerases Dirigidas por DNA , Interferon Tipo I , Mycobacterium tuberculosis , Rifampina , Transdução de Sinais , Interferon Tipo I/metabolismo , Animais , Camundongos , Rifampina/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Camundongos Endogâmicos C57BL , Farmacorresistência Bacteriana/genética , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/genética , Camundongos KnockoutRESUMO
Rapid and accurate quantification of low-abundance protein biomarkers in biofluids can transform the diagnosis of a range of pathologies, including infectious diseases. Here, we harness ultrabright plasmonic fluors as "digital nanolabels" and demonstrate the detection and quantification of subfemtomolar concentrations of human IL-6 and SARS-CoV-2 alpha and variant proteins in clinical nasopharyngeal swab and saliva samples from COVID-19 patients. The resulting digital plasmonic fluor-linked immunosorbent assay (digital p-FLISA) enables detection of SARS-CoV-2 nucleocapsid protein, both in solution and in live virions. Digital p-FLISA outperforms the "gold standard" enzyme-linked immunosorbent assay (ELISA), having a nearly 7000-fold lower limit-of-detection, and outperforms a commercial antigen test, having over 5000-fold improvement in analytical sensitivity. Detection and quantification of very low concentrations of target proteins holds potential for early detection of pathological conditions, treatment monitoring, and personalized medicine.
Assuntos
COVID-19 , Humanos , Ensaio de Imunoadsorção Enzimática , COVID-19/diagnóstico , Fluorimunoensaio , SARS-CoV-2 , Biomarcadores , Sensibilidade e EspecificidadeRESUMO
The imbalance in the gut microbiome plays a vital role in the progression of many diseases, including cancer, due to increased inflammation in the body. Since gut microbiome-induced inflammation can serve as a novel therapeutic strategy, there is an increasing need to identify novel approaches to investigate the effect of inflammation instigated by gut microbiome on cancer cells. However, there are limited biomimetic co-culture systems that allow testing of the causal relationship of the microbiome on cancer cells. Here we developed a microfluidic chip that can simulate the interaction of the gut microbiome and cancer cells to investigate the effects of bacteria and inflammatory stress on cancer cells in vitro. To test the microfluidic chip, we used colorectal cancer cells, as an increased microbiome abundance has been associated with poor outcomes in colorectal cancer. We cultured colorectal cancer cells with Bacillus bacteria or lipopolysaccharide (LPS), a purified bacterial membrane that induces a significant inflammatory response, in the microfluidic device. Our results showed that both LPS and Bacillus significantly accelerated the growth of colorectal cancer cells, therefore supporting that the increased presence of certain bacteria promotes cancer cell growth. The microfluidic device included in this study may have significant implications in identifying new treatments for various cancer types in the future.
Assuntos
Bacillus , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Lipopolissacarídeos , Inflamação , Bactérias , Dispositivos Lab-On-A-ChipRESUMO
Mycobacterium tuberculosis' success as a pathogen comes from its ability to evade degradation by macrophages. Normally macrophages clear microorganisms that activate pathogen-recognition receptors (PRRs) through a lysosomal-trafficking pathway called "LC3-associated phagocytosis" (LAP). Although Mtuberculosis activates numerous PRRs, for reasons that are poorly understood LAP does not substantially contribute to Mtuberculosis control. LAP depends upon reactive oxygen species (ROS) generated by NADPH oxidase, but Mtuberculosis fails to generate a robust oxidative response. Here, we show that CpsA, a LytR-CpsA-Psr (LCP) domain-containing protein, is required for Mtuberculosis to evade killing by NADPH oxidase and LAP. Unlike phagosomes containing wild-type bacilli, phagosomes containing the ΔcpsA mutant recruited NADPH oxidase, produced ROS, associated with LC3, and matured into antibacterial lysosomes. Moreover, CpsA was sufficient to impair NADPH oxidase recruitment to fungal particles that are normally cleared by LAP. Intracellular survival of the ΔcpsA mutant was largely restored in macrophages missing LAP components (Nox2, Rubicon, Beclin, Atg5, Atg7, or Atg16L1) but not in macrophages defective in a related, canonical autophagy pathway (Atg14, Ulk1, or cGAS). The ΔcpsA mutant was highly impaired in vivo, and its growth was partially restored in mice deficient in NADPH oxidase, Atg5, or Atg7, demonstrating that CpsA makes a significant contribution to the resistance of Mtuberculosis to NADPH oxidase and LC3 trafficking in vivo. Overall, our findings reveal an essential role of CpsA in innate immune evasion and suggest that LCP proteins have functions beyond their previously known role in cell-wall metabolism.
Assuntos
Proteínas de Bactérias/metabolismo , Macrófagos/imunologia , Proteínas Associadas aos Microtúbulos/fisiologia , NADPH Oxidase 2/fisiologia , Fagocitose/fisiologia , Tuberculose/prevenção & controle , Animais , Autofagia , Proteínas de Bactérias/genética , Feminino , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Mycobacterium tuberculosis/patogenicidade , Óxido Nítrico Sintase Tipo II/fisiologia , Fagossomos , Espécies Reativas de Oxigênio/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologiaRESUMO
A direct role for IgA either for elimination of malaria parasite or for improvement in tissue pathology has not been investigated in case of Malaria infection while IgG, IgE and IgM were all implicated in the adverse pathology. In this communication, we delineate further that Malaria specific IgA appears to be significant among individuals who had multiple episodes of infection. Interestingly, the IgA elicited by immunization of the homologous peptides derived from Plasmodium berghei ANKA have also resulted in protection of host from adverse lung pathology, while the parasite load is unaffected. The PfrVI immunized mice and mice infected with repeated cycles of 'infection and recovery', simulating an endemic like situation, have resulted in development of B cell population that secretes the IgA specific to this region VI. Summarily, our results suggest that the IgA specific to the malarial antigen can confer significant advantage to hosts in protecting the overall tissue pathology.
Assuntos
Imunoglobulina A/imunologia , Malária/imunologia , Malária/metabolismo , Plasmodium berghei/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Eritrócitos/metabolismo , Imunização , Ligantes , Malária/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium berghei/patogenicidade , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismoRESUMO
Mycobacterium tuberculosis (Mtb) infects several lung macrophage populations, which have distinct abilities to restrict Mtb. What enables Mtb survival in certain macrophage populations is not well understood. Here we used transposon sequencing analysis of Mtb in wild-type and autophagy-deficient mouse macrophages lacking ATG5 or ATG7, and found that Mtb genes involved in phthiocerol dimycocerosate (PDIM) virulence lipid synthesis confer resistance to autophagy. Using ppsD mutant Mtb, we found that PDIM inhibits LC3-associated phagocytosis (LAP) by inhibiting phagosome recruitment of NADPH oxidase. In mice, PDIM protected Mtb from LAP and classical autophagy. During acute infection, PDIM was dispensable for Mtb survival in alveolar macrophages but required for survival in non-alveolar macrophages in an autophagy-dependent manner. During chronic infection, autophagy-deficient mice succumbed to infection with PDIM-deficient Mtb, with impairments in B-cell accumulation in lymphoid follicles. These findings demonstrate that PDIM contributes to Mtb virulence and immune evasion, revealing a contributory role for autophagy in B-cell responses.
RESUMO
Mycobacterium tuberculosis (Mtb) possesses an arsenal of virulence factors to evade host immunity. Previously, we showed that the Mtb protein CpsA, which protects Mtb against the host NADPH oxidase, is required in mice during the first 3 weeks of infection but is thereafter dispensable for full virulence. Using flow cytometry, we find that ΔcpsA Mtb is retained in alveolar macrophages, impaired in recruiting and disseminating into monocyte-derived cells, and more likely to be localized in airway cells than wild-type Mtb. The lungs of ΔcpsA-infected mice also have markedly fewer antigen-specific T cells, indicating a delay in adaptive immunity. Thus, we conclude that CpsA promotes dissemination of Mtb from alveolar macrophages and the airways and generation of an adaptive immune response. Our studies of ΔcpsA Mtb show that a more effective innate immune response against Mtb can be undermined by a corresponding delay in the adaptive immune response.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Pulmão , Macrófagos Alveolares , Imunidade InataRESUMO
For decades, investigators have studied the interaction of Mycobacterium tuberculosis (Mtb) with macrophages, which serve as a major cellular niche for the bacilli. Because Mtb are prone to aggregation, investigators rely on varied methods to disaggregate the bacteria for these studies. Here, we examined the impact of routinely used preparation methods on bacterial cell envelope integrity, macrophage inflammatory responses, and intracellular Mtb survival. We found that both gentle sonication and filtering damaged the mycobacterial cell envelope and markedly impacted the outcome of infections in mouse bone marrow-derived macrophages. Unexpectedly, sonicated bacilli were hyperinflammatory, eliciting dramatically higher TLR2-dependent gene expression and elevated secretion of IL-1ß and TNF-α. Despite evoking enhanced inflammatory responses, sonicated bacilli replicated normally in macrophages. In contrast, Mtb that had been passed through a filter induced little inflammatory response, and they were attenuated in macrophages. Previous work suggests that the mycobacterial cell envelope lipid, phthiocerol dimycocerosate (PDIM), dampens macrophage inflammatory responses to Mtb. However, we found that the impact of PDIM depended on the method used to prepare Mtb. In conclusion, widely used methodologies to disaggregate Mtb may introduce experimental artifacts in Mtb-host interaction studies, including alteration of host inflammatory signaling, intracellular bacterial survival, and interpretation of bacterial mutants.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Macrófagos/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Fagossomos/metabolismo , Interações Hospedeiro-PatógenoRESUMO
Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the "FluoroDOT assay," which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.
Assuntos
Citocinas , Tuberculose , Humanos , Citocinas/metabolismo , Tuberculose/metabolismo , Macrófagos , Linfócitos T/metabolismoRESUMO
Intracellular pathogens have varied strategies to breach the endolysosomal barrier so that they can deliver effectors to the host cytosol, access nutrients, replicate in the cytoplasm, and avoid degradation in the lysosome. In the case of Mycobacterium tuberculosis, the bacterium perforates the phagosomal membrane shortly after being taken up by macrophages. Phagosomal damage depends upon the mycobacterial ESX-1 type VII secretion system (T7SS). Sterile insults, such as silica crystals or membranolytic peptides, can also disrupt phagosomal and endolysosomal membranes. Recent work revealed that the host endosomal sorting complex required for transport (ESCRT) machinery rapidly responds to sterile endolysosomal damage and promotes membrane repair. We hypothesized that ESCRTs might also respond to pathogen-induced phagosomal damage and that M. tuberculosis could impair this host response. Indeed, we found that ESCRT-III proteins were recruited to M. tuberculosis phagosomes in an ESX-1-dependent manner. We previously demonstrated that the mycobacterial effectors EsxG/TB9.8 and EsxH/TB10.4, both secreted by the ESX-3 T7SS, can inhibit ESCRT-dependent trafficking of receptors to the lysosome. Here, we additionally show that ESCRT-III recruitment to sites of endolysosomal damage is antagonized by EsxG and EsxH, both within the context of M. tuberculosis infection and sterile injury. Moreover, EsxG and EsxH themselves respond within minutes to membrane damage in a manner that is independent of calcium and ESCRT-III recruitment. Thus, our study reveals that T7SS effectors and ESCRT participate in a series of measures and countermeasures for control of phagosome integrity.IMPORTANCEMycobacterium tuberculosis causes tuberculosis, which kills more people than any other infection. M. tuberculosis grows in macrophages, cells that specialize in engulfing and degrading microorganisms. Like many intracellular pathogens, in order to cause disease, M. tuberculosis damages the membrane-bound compartment (phagosome) in which it is enclosed after macrophage uptake. Recent work showed that when chemicals damage this type of intracellular compartment, cells rapidly detect and repair the damage, using machinery called the endosomal sorting complex required for transport (ESCRT). Therefore, we hypothesized that ESCRT might also respond to pathogen-induced damage. At the same time, our previous work showed that the EsxG-EsxH heterodimer of M. tuberculosis can inhibit ESCRT, raising the possibility that M. tuberculosis impairs this host response. Here, we show that ESCRT is recruited to damaged M. tuberculosis phagosomes and that EsxG-EsxH undermines ESCRT-mediated endomembrane repair. Thus, our studies demonstrate a battle between host and pathogen over endomembrane integrity.
Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Sistemas de Secreção Tipo VII/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Camundongos , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Fagossomos/microbiologia , Ligação ProteicaRESUMO
The mycobacterial tlyA gene product, Rv1694 (MtbTlyA), has been annotated as "hemolysin" which was re-annotated as 2'-O rRNA methyl transferase. In order to function as a hemolysin, it must reach the extracellular milieu with the help of signal sequence(s) and/or transmembrane segment(s). However, the MtbTlyA neither has classical signals sequences that signify general/Sec/Tat pathways nor transmembrane segments. Interestingly, the tlyA gene appears to be restricted to pathogenic strains such as H37Rv, M. marinum, M. leprae, than M. smegmatis, M. vaccae, M. kansasii etc., which highlights the need for a detailed investigation to understand its functions. In this study, we have provided several evidences which highlight the presence of TlyA on the surface of M. marinum (native host) and upon expression in M. smegmatis (surrogate host) and E. coli (heterologous host). The TlyA was visualized at the bacterial-surface by confocal microscopy and accessible to Proteinase K. In addition, sub-cellular fractionation has revealed the presence of TlyA in the membrane fractions and this sequestration is not dependent on TatA, TatC or SecA2 pathways. As a consequence of expression, the recombinant bacteria exhibit distinct hemolysis. Interestingly, the MtbTlyA was also detected in both membrane vesicles secreted by M. smegmatis and outer membrane vesicles secreted by E. coli. Our experimental evidences unambiguously confirm that the mycobacterial TlyA can reach the extra cellular milieu without any signal sequence. Hence, the localization of TlyA class of proteins at the bacterial surface may highlight the existence of non-classical bacterial secretion mechanisms.
Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Parede Celular/química , Mycobacterium/química , Sinais Direcionadores de Proteínas , Animais , Endopeptidase K/metabolismo , Escherichia coli/química , Escherichia coli/genética , Camundongos , Microscopia Confocal , Mycobacterium/citologia , Mycobacterium/genética , Proteólise , Coelhos , Vesículas Secretórias/químicaRESUMO
The pathogenic traits of TlyA proteins of Mycobacterium tuberculosis are not known. Expressions of TlyA in bacteria that do not express endogenous TlyA adhere better to RAW264.7 macrophages and get phagocytosed efficiently. The internalized bacteria avoid acidification to the extent of greater than 65 percent in the case of both TlyA-expressing E. coli and M. smegmatis. Consistent with this observation, we have observed decreased co-localizaton of Lysosomal Membrane Associated Protein-1 (approx. 35 percent), Early Endosomal Antigen-1 (approx. 34 percent), Rab5 (approx. 30 percent) and Rab7 (approx. 35 percent) and enhanced colocalizaton of Rab14 (approx. 80 percent) on both TlyA-expressing bacteria as well as on TlyA-coated latex beads. These results suggest that the mycobacterial TlyA, in general, can modulate phagolysosome maturation pathway immediately after entry into macrophages, while other important molecules may aid the bacterium for long-term, intracellular survival at later point of time.