Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadk8646, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517959

RESUMO

In the boreal spring of 2023, an extreme coastal El Niño struck the coastal regions of Peru and Ecuador, causing devastating rainfalls, flooding, and record dengue outbreaks. Observations and ocean model experiments reveal that northerly alongshore winds and westerly wind anomalies in the eastern equatorial Pacific, initially associated with a record-strong Madden-Julian Oscillation and cyclonic disturbance off Peru in March, drove the coastal warming through suppressed coastal upwelling and downwelling Kelvin waves. Atmospheric model simulations indicate that the coastal warming in turn favors the observed wind anomalies over the far eastern tropical Pacific by triggering atmospheric deep convection. This implies a positive feedback between the coastal warming and the winds, which further amplifies the coastal warming. In May, the seasonal background cooling precludes deep convection and the coastal Bjerknes feedback, leading to the weakening of the coastal El Niño. This coastal El Niño is rare but predictable at 1 month lead, which is useful to protect lives and properties.

2.
Nat Commun ; 15(1): 7401, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191781

RESUMO

The East Asian summer monsoon (EASM) supplies vital rainfall for over one billion people. El Niño-Southern Oscillation (ENSO) markedly affects the EASM, but its impacts are more robust following El Niño than La Niña. Here, we show that this asymmetry arises from the asymmetry in ENSO evolution: though most El Niño events last for one year, La Niña events often persist for 2-3 years. In the summers between consecutive La Niña events, the concurrent La Niña opposes the delayed effect of the preceding winter La Niña on the EASM, causing a reduction in the magnitude and coherence of climate anomalies. Results from a large ensemble climate model experiment corroborate and strengthen the observational analysis with an order of magnitude increase in sample size. The apparent asymmetry in the impacts of the ENSO on the EASM can be reduced by considering the concurrent ENSO, in addition to the ENSO state in the preceding winter. This has important implications for seasonal climate forecasts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa